Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
< >
page |< < (6) of 213 > >|
236DE IIS QVAE VEH. IN AQVA.
COMMENTARIVS.
AT ucro ea, quæ feruntur deorſum, ſecundum perpendicula-
rem, quæ per centrum grauit atis ipſorum ducitur, ſimiliter ferri,
uel tanquam notum, uel ut ab alĳs poſitum prætermiſit.
PROPOSITIO VIII.
SI aliqua magnitudo ſolida leuior humido,
11A quæ figuram portionis ſphæræ habeat, in humi-
22B dum demittatur, ita vt baſis portionis non tan-
gat humidum:
figura inſidebit recta, ita vt axis
portionis ſit ſecundum perpendicularem.
Et ſi
ab aliquo inclinetur figura, vt baſis portionis hu-
midum cõtingat;
non manebit inclinata ſi demit
tatur, ſed recta reſtituetur.
[INTELLIGATVR quædam magnitudo, qualis
33Suppleta
a Federi-
co Cõm.
dicta eſt, in humidum demiſſa:
& ducatur planum per axẽ
portionis, &
per terræ
centrum, ut ſit ſuperfi-
ciei humidi ſectio circũ
ferentia a b c d:
& figu-
ræ ſectio e f h circunfe-
rentia:
ſit autem e h
recta linea;
& f t axis
portionis.
Si igitur in-
clinetur figura, ita ut a-
xis portionis f t non ſit
ſecundum perpendicu-
larem.
demonſtrandum eſt, non manere ipſam figu-
ram;
ſed in rectum reſtitui. Itaque centrum ſphæræ