Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 213 > >|
52ARCHIMEDIS q o; uidelicet ut h g ad f p: quod proxime demonſtr atum eſt. At
112. lem: ueroipſi g q æquales ſunt duæ lineæ ſimul ſumptæ qb, hoc eſt h b,
224. lem.&
b g: atque ipſi q a æqualis eſt h f. Sienim ab æqualibus h b,
bq, æqualia fb,
ba demantur, re
manentia æqua-
lia erunt.
ergo
dempta h g ex
duabus lineis h
b, h g, relinqui-
tur dupla ipſius
b g;
hoc eſt o h:
& dempta p f ex
f h, reliqua est
b p.
quare o h
3319. quinti ad h p, eſt ut g q
Sed ut
g q ad q a, ita
hoc
eſt h g ad n c:
& ut o h ad h p,
4415. quin-
ti.
ita g b ad c k.
eſt
cnim o h dupla
g b, &
h p item
dupla gf;
hoc eſt
c k.
eandem igitur proportionem habet h g ad n c, qnam g b ad
c k:
& permutando n c ad c k eandem habet, quam b g ad g b.
Sumatur deinde aliud quod uis punctum in ſectum in ſectione,
quod ſit s:
& per s duæ lineæ ducantur: st quidem
æquidistans ipſi db, diametrumque in puncto t ſecans;
s u uero æquidistans ac, & ſecans c e in u. Dico u c