Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
[Figure 151]
< >
page |< < (15) of 213 > >|
14315DE CENTRO GRAVIT. SOLID.97[Figure 97] ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
dri portio ad c_y_lindri portionem:
& ut p_y_ramis ad p_y_ra-
midem, ita priſma ad priſma, cum eadem ſit baſis, &
æqua
lis altitudo;
erit c_y_lindrus uel c_y_lindri portio x priſma-
ti _y_ æqualis.
eftq; ut ſpacium g h ad ſpacium x, ita c_y_lin-
drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
tionem x.
Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
117. quinti ſpacio g h deſcripta, eandem proportionem habere, quam
ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
quod demonſtrandum fuerat.
THE OREMA IX. PROPOSITIO IX.
Si pyramis ſecetur plano baſi æquidiſtante; ſe-
ctio erit figura ſimilis ei, quæ eſt baſis, centrum
grauitatis in axe habens.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index