Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
< >
page |< < of 213 > >|
158FED. COMMANDINI ut altitudo ad altitudinem & componendo conuertendo
que ſolidum a b g h, hoc eſt ſolidum a b c d ipſi æquale, ad
117. quinti. ſolidum a b e f, ut altitudo ſolidi a b c d ad ſolidi a b e f al-
titudinem.
Sint ſolida parallelepipeda a b, c d in æqualibus baſibus
conſtituta:
ſitq; b e altitudo ſolidi a b: & ſolidi c d altitudo
d f;
quæ quidem maior ſit, quàm b e. Dico ſolidum a b ad
ſolidum c d eandem habere proportionem, quam be ad
d f.
abſcindatur enim à linea d f æqualis ipſi b e, quæ ſit g f:
& per g ducatur planum ſecans ſolidum c d; quod baſibus
æquidiſtet, faciatq;
ſectionẽ h K. erunt ſolida a b, c k æque
2231. unde
cimi
alta inter
ſe æqualia
cũ æqua-
les baſes
habeant.
Sed ſolidũ
3318. huius h d ad ſoli
dum c _K_
eſt, ut alti
tudo d g
tudinẽ ſe
catur enim ſolidum c d plano baſi
bus æquidiſtante:
& rurſus cõpo-
nendo, conuertendoq;
ſolidũ c _k_