Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < (43) of 213 > >|
ex iis, quæ dicta ſunt:
conſtat n t lineæ ψ æqualem eſſe,
quare &
portio-
nes a n z, a g q
ſunt æquales.
Et
quoniam in por
tionibus æquali
bus, &
ſimilibus
a g q l, a n z l, ab
extremitatibus
baſiũ ductæ ſunt
a q, a z, quæ æ-
quales portiões
abſcindunt:
per
ſpicuum eſt an-
gulos facere æ-
quales cum por
tionum diame-
tris:
& triangu-
lorum n fs, g ω c, angulos, qui ad f ω æquales eſſe:
itemque
æquales inter ſe, s b, c b;
& s r, c r, quare & n χ, g y æquales:
& χ t y i. cũq; g h dupla ſit ipſius h i, erit n χ minor, quàm
duplaipſius χ t.
Sit igitur n m ipſius m t dupla: & iuncta
Itaque centrum grauitatis totius
erit punctum K:
partis eius, quæ eſt in humido, punctũ m:
eius autem, quæ extra humidum in linea protracta, quod
ſit e.
ergo ex proxime demonſtratis patet, nõ manere por
tionem, ſed inclinari adeo, ut baſis nullo modo ſuperficiẽ
humidi contingat.
At uero portionem conſiſtere ita, uta-
xis cum ſuperficie humidi faciat angulum angulo φ mino-
rem, ſic demonſtrabitur.
conſiſtat enim, ſi fieri poteſt, ut
non faciat angulum minorem angulo φ: