Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < of 213 > >|
188FED. COMMANDINI At cum e f ſit ſexta pars axis
138[Figure 138] ſphæræ, crit d e tripla e f.
ergo
punctum e eſt grauitatis cen-
trum ipſius pyramidis:
quod
in uigeſima ſecunda huius de-
monſtratum fuit.
Sed e eſt cen
trum ſphæræ.
Sequitur igitur,
ut centrum grauitatis pyrami-
dis in ſphæra deſcriptæ idem
ſit, quod ipſius ſphæræ cen-
trum.
Sit cubus in ſphæra deſcriptus a b, & oppoſitorum pla-
norum lateribus bifariam diuiſis, per puncta diuiſionum
plana ducantur, ut communis ipſorum ſectio ſit recta li-
nea c d.
Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
ſecent autem in puncto e. erit
139[Figure 139] e centrũ grauitatis ſolidi a b,
id quod demonſtratum eſt in
octaua huius.
Sed quoniam ab
eſt ſphæræ diametro æqualis,
ut in decima quinta propoſi-
tione tertii decimi libri elemẽ
torum oſtenditur:
punctum e
ſphæræ quoque centrum erit.
Cubi igitur in ſphæra deſcri-
pti grauitatis centrum idem
eſt, quod centrum ipſius ſphæræ.
Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
ſphæræ centrum ſit g.
Dico punctum g ipſius octahedri
grauitatis centrum eſſe.
Conſtat enim ex iis, quæ demon-
ſtrata ſunt à Campano in quinto decimo libro elemento-
rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
in duas pyramides æquales, &
ſimiles; uidelicetin

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index