Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < (6) of 213 > >|
1236DE CENTRO GRAVIT. SOLID. habebit maiorem proportionẽ,
79[Figure 79] quam c b ad b a.
fiat o b ad b a,
ut figura rectilinea ad portio-
nes.
cum igitur à circulo, uel el-
lipſi, cuius grauitatis centrum
eſt b, auferatur figura rectilinea
e f g h k l m n, cuius centrum a;
reliquæ magnitudinis ex portio
118. Archi-
medis.
nibus compoſitæ centrum graui
tatis erit in linea a b producta,
&
in puncto o, extra figuram po
ſito.
quod quidem fieri nullo mo
do poſſe perſpicuum eſt.
ſequi-
tur ergo, ut circuli &
ellipſis cen
trum grauitatis ſit punctum a,
idem quod figuræ centrum.
ALITER.
Sit circulus, uel ellipſis a b c d,
cuius diameter d b, &
centrum e: ducaturq; per e recta li
nea a c, ſecans ipſam d b adrectos angulos.
erunt a d c,
a b c circuli, uel ellipſis dimidiæ portiones.
Itaque quo-
niam por
80[Figure 80] tiõis a d c
cétrū gra-
uitatis eſt
in diame-
tro d e:
&
portionis
a b c cen-
trum eſt ĩ
ipſa e b:
to
tius circu
li, uel ellipſis grauitatis centrum eritin diametro d b.
Sit autem portionis a d c cẽtrum grauitatis f: &

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index