Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < of 213 > >|
156FED. COMMANDINI mus: erit utique grauitatis centrum pyramidis punctum
g:
in quo ſcilicet ipſi axes conueniunt.
THEOREMA XIIII. PROPOSITIO XVIII.
Si ſolidum parallelepipedum ſecetur plano
baſibus æquidiſtante;
erit ſolidum ad ſolidum,
ſicut altitudo ad altitudinem, uel ſicut axisad
axem.
Sit ſolidum parallelepipe
110[Figure 110] dum a b c d e f g h, cuius axis
k 1:
ſeceturq; plano baſibus
æquidiſtante, quod faciat
fectionem m n o p;
& axi in
puncto q occurrat.
Dico
ſolidum g m ad ſolidum m c
eam proportionem habere,
quam altitudo ſolidi g m ha-
betad ſolidi m c altitudi-
nem;
uel quam axis k q ad
axem q l.
Sienim axis K l ad
baſis planum ſit perpendicu
laris, &
linea g c, quæ ex quin
ta huius ipſi k l æquidiſtat,
perpendicularis erit ad idẽ
planum, &
ſolidi altitudi-
nem dimetietur.
Itaqueſo-
112. undeci
mi.
lidum g m ad ſolidum m c
eam proportionem habet,
quam parallelogrammũ g n
ad parallelogrammum n c,
hoc eſt quam linea g o, quæ
22i. ſexti.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index