Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (19) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div230" type="section" level="1" n="78">
          <pb o="19" file="0149" n="149" rhead="DE CENTRO GRAVIT. SOLID."/>
          <figure number="102">
            <image file="0149-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0149-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <head xml:id="echoid-head86" xml:space="preserve">THEOREMA X. PROPOSITIO XIIII.</head>
          <p>
            <s xml:id="echoid-s3761" xml:space="preserve">Cuiuslibet pyramidis, & </s>
            <s xml:id="echoid-s3762" xml:space="preserve">cuiuslibet coni, uel
              <lb/>
            coni portionis, centrum grauitatis in axe cõſiſtit.</s>
            <s xml:id="echoid-s3763" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3764" xml:space="preserve">SIT pyramis, cuius baſis triangulum a b c: </s>
            <s xml:id="echoid-s3765" xml:space="preserve">& </s>
            <s xml:id="echoid-s3766" xml:space="preserve">axis d e.
              <lb/>
            </s>
            <s xml:id="echoid-s3767" xml:space="preserve">Dico in linea d e ipſius grauitatis centrum ineſſe. </s>
            <s xml:id="echoid-s3768" xml:space="preserve">Si enim
              <lb/>
            fieri poteſt, ſit centrum f: </s>
            <s xml:id="echoid-s3769" xml:space="preserve">& </s>
            <s xml:id="echoid-s3770" xml:space="preserve">ab f ducatur ad baſim pyrami
              <lb/>
            dis linea f g, axi æquidiſtans: </s>
            <s xml:id="echoid-s3771" xml:space="preserve">iunctaq; </s>
            <s xml:id="echoid-s3772" xml:space="preserve">e g ad latera trian-
              <lb/>
            guli a b c producatur in h. </s>
            <s xml:id="echoid-s3773" xml:space="preserve">quam uero proportionem ha-
              <lb/>
            bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
              <lb/>
            quo K: </s>
            <s xml:id="echoid-s3774" xml:space="preserve">inſcribaturq; </s>
            <s xml:id="echoid-s3775" xml:space="preserve">in pyramide ſolida figura, & </s>
            <s xml:id="echoid-s3776" xml:space="preserve">altera cir
              <lb/>
            cumſcribatur ex priſmatibus æqualem habentibus altitu-
              <lb/>
            dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
              <lb/>
            dine, quæ ſolido _k_ ſit minor. </s>
            <s xml:id="echoid-s3777" xml:space="preserve">Et quoniam in pyramide pla
              <lb/>
            num baſi æquidiſtans ductum ſectionem facit figuram ſi-
              <lb/>
            milem ei, quæ eſt baſis; </s>
            <s xml:id="echoid-s3778" xml:space="preserve">centrumq; </s>
            <s xml:id="echoid-s3779" xml:space="preserve">grauitatis in axe haben
              <lb/>
            tem: </s>
            <s xml:id="echoid-s3780" xml:space="preserve">erit priſmatis s t grauitatis centrũ in linear q; </s>
            <s xml:id="echoid-s3781" xml:space="preserve">priſ-
              <lb/>
            matis u x centrum in linea q p; </s>
            <s xml:id="echoid-s3782" xml:space="preserve">priſmatis y z in linea p o; </s>
            <s xml:id="echoid-s3783" xml:space="preserve">
              <lb/>
            priſmatis η θ in l_i_nea o n; </s>
            <s xml:id="echoid-s3784" xml:space="preserve">priſmatis λ μ in linea n m; </s>
            <s xml:id="echoid-s3785" xml:space="preserve">priſ-
              <lb/>
            matis ν π in m l; </s>
            <s xml:id="echoid-s3786" xml:space="preserve">& </s>
            <s xml:id="echoid-s3787" xml:space="preserve">denique priſmatis ρ σ in l e. </s>
            <s xml:id="echoid-s3788" xml:space="preserve">quare </s>
          </p>
        </div>
      </text>
    </echo>