Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 151
>
[141. Figure]
Page: 191
[142. Figure]
Page: 192
[143. Figure]
Page: 193
[144. Figure]
Page: 194
[145. Figure]
Page: 201
[146. Figure]
Page: 201
[147. Figure]
Page: 201
[148. Figure]
Page: 201
[149. Figure]
Page: 203
[150. Figure]
Page: 205
[151. Figure]
Page: 208
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 151
>
page
|<
<
(36)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
91
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
36
"
file
="
0183
"
n
="
183
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
<
lb
/>
ſtat; </
s
>
<
s
xml:space
="
preserve
">hoc eſt ipſius fruſti. </
s
>
<
s
xml:space
="
preserve
">Sed fruſti centrum eſt etiam in a-
<
lb
/>
xe g h. </
s
>
<
s
xml:space
="
preserve
">ergo in puncto φ, in quo lineæ z u, g h conueniunt.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Itaque u φ ad φ z eam proportionem habet, quam pyramis
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0183-01a
"
xlink:href
="
note-0183-01
"/>
b c f e d ad pyramidem a b c d. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">componendo u z ad z φ
<
lb
/>
eam habet, quam fruſtum ad pyramidem a b c d. </
s
>
<
s
xml:space
="
preserve
">Vtuero
<
lb
/>
u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
<
lb
/>
u o φ, z p φ. </
s
>
<
s
xml:space
="
preserve
">quare o p ad p φ eſt ut fruſtum ad pyramidem
<
lb
/>
a b c d. </
s
>
<
s
xml:space
="
preserve
">ſed ita erat o p ad p q. </
s
>
<
s
xml:space
="
preserve
">æquales igitur ſunt p φ, p q: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0183-02a
"
xlink:href
="
note-0183-02
"/>
q φ unum atque idem punctum. </
s
>
<
s
xml:space
="
preserve
">ex quibus ſequitur lineam
<
lb
/>
z u ſecare o p in q: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">propterea pũctum q ipſius fruſti gra-
<
lb
/>
uitatis centrum eſſe.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
figure
xlink:label
="
fig-0181-01
"
xlink:href
="
fig-0181-01a
">
<
image
file
="
0181-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0181-01
"
xlink:href
="
note-0181-01a
"
xml:space
="
preserve
">3. diffi. hu
<
lb
/>
ius.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0181-02
"
xlink:href
="
note-0181-02a
"
xml:space
="
preserve
">Vltima e-
<
lb
/>
auſdẽ libri
<
lb
/>
Archime-
<
lb
/>
dis.</
note
>
<
figure
xlink:label
="
fig-0182-01
"
xlink:href
="
fig-0182-01a
">
<
image
file
="
0182-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0182-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0182-01
"
xlink:href
="
note-0182-01a
"
xml:space
="
preserve
">2. ſexti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0183-01
"
xlink:href
="
note-0183-01a
"
xml:space
="
preserve
">8. prim I
<
lb
/>
libri Ar-
<
lb
/>
chimedis
<
lb
/>
de cẽtro
<
lb
/>
grauita-
<
lb
/>
tis plano
<
lb
/>
runi</
note
>
<
note
position
="
right
"
xlink:label
="
note-0183-02
"
xlink:href
="
note-0183-02a
"
xml:space
="
preserve
">7. quinti.</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit fruſtum a g à pyramide, quæ quadrangularem baſim
<
lb
/>
habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">axis k l. </
s
>
<
s
xml:space
="
preserve
">diuidatur autem primũ _k_ l, ita ut quam propor-
<
lb
/>
tionem habet duplum lateris a b unà cum latere e f ad du
<
lb
/>
plum lateris e f unà cum a b; </
s
>
<
s
xml:space
="
preserve
">habeat k m ad m l. </
s
>
<
s
xml:space
="
preserve
">deinde à
<
lb
/>
púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
<
lb
/>
l o. </
s
>
<
s
xml:space
="
preserve
">poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
<
lb
/>
cuius baſis ſit eadem, quæ fruſti, & </
s
>
<
s
xml:space
="
preserve
">altitudo æqualis. </
s
>
<
s
xml:space
="
preserve
">Dico
<
lb
/>
punctum p fruſti a g grauitatis centrum eſſe. </
s
>
<
s
xml:space
="
preserve
">ducantur
<
lb
/>
enim a c, e g: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">intelligantur duo fruſta triangulares ba-
<
lb
/>
ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
<
lb
/>
ſtet; </
s
>
<
s
xml:space
="
preserve
">alterum l h ex baſibus a c d, e g h. </
s
>
<
s
xml:space
="
preserve
">Sitq; </
s
>
<
s
xml:space
="
preserve
">fruſti l f axis
<
lb
/>
q r; </
s
>
<
s
xml:space
="
preserve
">in quo grauitatis centrum s: </
s
>
<
s
xml:space
="
preserve
">fruſti uero l h axis t u, & </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
x grauitatis centrum: </
s
>
<
s
xml:space
="
preserve
">deinde iungantur u r, t q, x s. </
s
>
<
s
xml:space
="
preserve
">tranſi-
<
lb
/>
bit u r per l: </
s
>
<
s
xml:space
="
preserve
">quoniam l eſt centrum grauitatis quadran-
<
lb
/>
guli a b c d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">puncta r u grauitatis centra triangulorum
<
lb
/>
a b c, a c d; </
s
>
<
s
xml:space
="
preserve
">in quæ quadrangulum ipſum diuiditur. </
s
>
<
s
xml:space
="
preserve
">eadem
<
lb
/>
quoque ratione t q per punctum _k_ tranſibit. </
s
>
<
s
xml:space
="
preserve
">At uero pro
<
lb
/>
portiones, ex quibus fruſtorum grauitatis centra inquiri-
<
lb
/>
mus, eædem ſunt in toto ſruſto a g, & </
s
>
<
s
xml:space
="
preserve
">in fruſtis l f, l h. </
s
>
<
s
xml:space
="
preserve
">Sunt
<
lb
/>
enim per octauam huius quadrilatera a b c d, e f g h ſimilia:</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>