Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
< >
page |< < (8) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div208" type="section" level="1" n="69">
          <p>
            <s xml:id="echoid-s3250" xml:space="preserve">
              <pb o="8" file="0127" n="127" rhead="DE CENTRO GRAVIT. SOLID."/>
            æquidiſtant autem c g o, m n p. </s>
            <s xml:id="echoid-s3251" xml:space="preserve">ergo parallelogrãma ſunt
              <lb/>
            o n, g m, & </s>
            <s xml:id="echoid-s3252" xml:space="preserve">linea m n æqualis c g; </s>
            <s xml:id="echoid-s3253" xml:space="preserve">& </s>
            <s xml:id="echoid-s3254" xml:space="preserve">n p ipſi g o. </s>
            <s xml:id="echoid-s3255" xml:space="preserve">aptatis igi-
              <lb/>
            tur
              <emph style="sc">K</emph>
            l m, a b c triãgulis, quæ æqualia & </s>
            <s xml:id="echoid-s3256" xml:space="preserve">ſimilia sũt; </s>
            <s xml:id="echoid-s3257" xml:space="preserve">linea m p
              <lb/>
            in c o, & </s>
            <s xml:id="echoid-s3258" xml:space="preserve">punctum n in g cadet. </s>
            <s xml:id="echoid-s3259" xml:space="preserve">Quòd cũ g ſit centrum gra-
              <lb/>
            uitatis trianguli a b c, & </s>
            <s xml:id="echoid-s3260" xml:space="preserve">n trianguli
              <emph style="sc">K</emph>
            l m grauitatis cen-
              <lb/>
            trum erit id, quod demonſtrandum relinquebatur. </s>
            <s xml:id="echoid-s3261" xml:space="preserve">Simili
              <lb/>
            ratione idem contingere demonſtrabimus in aliis priſma-
              <lb/>
            tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
              <lb/>
            quæ opponuntur.</s>
            <s xml:id="echoid-s3262" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div211" type="section" level="1" n="70">
          <head xml:id="echoid-head77" xml:space="preserve">COROLLARIVM.</head>
          <p>
            <s xml:id="echoid-s3263" xml:space="preserve">Exiam demonſtratis perſpicue apparet, cuius
              <lb/>
            Iibet priſmatis axem, parallelogrammorum lat eri
              <lb/>
            bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</s>
            <s xml:id="echoid-s3264" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div212" type="section" level="1" n="71">
          <head xml:id="echoid-head78" xml:space="preserve">THEOREMA VI. PROPOSITIO VI.</head>
          <p>
            <s xml:id="echoid-s3265" xml:space="preserve">Cuiuslibet priſmatis centrum grauitatis eſt in
              <lb/>
            plano, quod oppoſitis planis æquidiſtans, reli-
              <lb/>
            quorum planorum latera bifariam diuidit.</s>
            <s xml:id="echoid-s3266" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3267" xml:space="preserve">Sit priſma, in quo plana, quæ opponuntur ſint trian-
              <lb/>
            gula a c e, b d f: </s>
            <s xml:id="echoid-s3268" xml:space="preserve">& </s>
            <s xml:id="echoid-s3269" xml:space="preserve">parallelogrammorum latera a b, c d,
              <lb/>
            e f bifariam diuidãtur in punctis g h _K_: </s>
            <s xml:id="echoid-s3270" xml:space="preserve">per diuiſiones au-
              <lb/>
            tem planum ducatur; </s>
            <s xml:id="echoid-s3271" xml:space="preserve">cuius ſectio figura g h _K_. </s>
            <s xml:id="echoid-s3272" xml:space="preserve">eritlinea
              <lb/>
              <note position="right" xlink:label="note-0127-01" xlink:href="note-0127-01a" xml:space="preserve">33. primi</note>
            g h æquidiſtans lineis a c, b d & </s>
            <s xml:id="echoid-s3273" xml:space="preserve">h k ipſis c e, d f. </s>
            <s xml:id="echoid-s3274" xml:space="preserve">quare ex
              <lb/>
            decimaquinta undecimi elementorum, planum illud pla
              <lb/>
            nis a c e, b d f æquidiſtabit, & </s>
            <s xml:id="echoid-s3275" xml:space="preserve">ſaciet ſectionem figu-
              <lb/>
              <note position="right" xlink:label="note-0127-02" xlink:href="note-0127-02a" xml:space="preserve">5. huius</note>
            ram ipſis æqualem, & </s>
            <s xml:id="echoid-s3276" xml:space="preserve">ſimilem, ut proxime demonſtra-
              <lb/>
            uimus. </s>
            <s xml:id="echoid-s3277" xml:space="preserve">Dico centrum grauitatis priſmatis eſſe in plano
              <lb/>
            g h
              <emph style="sc">K</emph>
            . </s>
            <s xml:id="echoid-s3278" xml:space="preserve">Si enim fieri poteſt, ſit eius centrum l: </s>
            <s xml:id="echoid-s3279" xml:space="preserve">& </s>
            <s xml:id="echoid-s3280" xml:space="preserve">ducatur
              <lb/>
            l m uſque ad planum g h
              <emph style="sc">K</emph>
            , quæ ipſi a b æquidiſtet.</s>
            <s xml:id="echoid-s3281" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>