Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < (14) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3538" xml:space="preserve">
              <pb o="14" file="0139" n="139" rhead="DE CENTRO GRAVIT. SOLID."/>
            ſimiliter demonſtrabitur totius priſmatis a _K_ grauitatis eſ
              <lb/>
            ſe centrum. </s>
            <s xml:id="echoid-s3539" xml:space="preserve">Simili ratione & </s>
            <s xml:id="echoid-s3540" xml:space="preserve">in aliis priſinatibus illud
              <lb/>
            idem ſacile demonſtrabitur. </s>
            <s xml:id="echoid-s3541" xml:space="preserve">Quo autem pacto in omni
              <lb/>
            figura rectilinea centrum grauitatis inueniatur, do cuimus
              <lb/>
            in commentariis in ſextam propoſitionem Archimedis de
              <lb/>
            quadratura parabolæ.</s>
            <s xml:id="echoid-s3542" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3543" xml:space="preserve">Sit cylindrus, uel cylindri portio c e cuius axis a b: </s>
            <s xml:id="echoid-s3544" xml:space="preserve">ſece-
              <lb/>
            turq, plano per axem ducto; </s>
            <s xml:id="echoid-s3545" xml:space="preserve">quod ſectionem faciat paral-
              <lb/>
            lelo grammum c d e f: </s>
            <s xml:id="echoid-s3546" xml:space="preserve">& </s>
            <s xml:id="echoid-s3547" xml:space="preserve">diuiſis c f, d e bifariam in punctis
              <lb/>
              <figure xlink:label="fig-0139-01" xlink:href="fig-0139-01a" number="94">
                <image file="0139-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0139-01"/>
              </figure>
            g h, per ea ducatur planum baſi æquidiſtans. </s>
            <s xml:id="echoid-s3548" xml:space="preserve">erit ſectio g h
              <lb/>
            circulus, uel ellipſis, centrum habens in axe; </s>
            <s xml:id="echoid-s3549" xml:space="preserve">quod ſit K: </s>
            <s xml:id="echoid-s3550" xml:space="preserve">at-
              <lb/>
              <note position="right" xlink:label="note-0139-01" xlink:href="note-0139-01a" xml:space="preserve">4. huius.</note>
            que erunt ex iis, quæ demonſtrauimus, centra grauitatis
              <lb/>
            planorum oppoſitorum puncta a b: </s>
            <s xml:id="echoid-s3551" xml:space="preserve">& </s>
            <s xml:id="echoid-s3552" xml:space="preserve">plani g h ipſum _k_. </s>
            <s xml:id="echoid-s3553" xml:space="preserve">in
              <lb/>
            quo quidem plano eſt centrum grauitatis cylindri, uel cy-
              <lb/>
            lindri portionis. </s>
            <s xml:id="echoid-s3554" xml:space="preserve">Dico punctum K cylindri quoque, uel cy
              <lb/>
            lindri portionis grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s3555" xml:space="preserve">Si enim fieri po-
              <lb/>
            teſt, ſitl centrum: </s>
            <s xml:id="echoid-s3556" xml:space="preserve">ducaturq; </s>
            <s xml:id="echoid-s3557" xml:space="preserve">k l, & </s>
            <s xml:id="echoid-s3558" xml:space="preserve">extra figuram in m pro-
              <lb/>
            ducatur. </s>
            <s xml:id="echoid-s3559" xml:space="preserve">quam uero proportionem habet linea m K ad _k_ </s>
          </p>
        </div>
      </text>
    </echo>