Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (29) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb o="29" file="0169" n="169" rhead="DE CENTRO GRAVIT. SOLID."/>
            l h eandem habet proportionem, quam e m ad m k, uideli-
              <lb/>
            cet triplam. </s>
            <s xml:space="preserve">quare linea l m ipſam e f ſecabit in puncto g:
              <lb/>
            </s>
            <s xml:space="preserve">etenim e g ad g f eſt, ut el ad l h. </s>
            <s xml:space="preserve">præterea quoniam h k, l m
              <lb/>
            æquidiſtant, erunt triangula h e f, l e g ſimilia: </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">inter
              <lb/>
            ſe ſimilia f e k, g e m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut e fad e g, ita h fad l g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita f _K_ ad
              <lb/>
            g m. </s>
            <s xml:space="preserve">ergo uth fadlg, ita f k ad g m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">permutando uth f
              <lb/>
            ad f _K_, ita l g ad g m. </s>
            <s xml:space="preserve">ſed cum h ſit centrum trianguli a b d; </s>
            <s xml:space="preserve">
              <lb/>
            & </s>
            <s xml:space="preserve">K triãguli b c d: </s>
            <s xml:space="preserve">punctũ uero f totius quadrilateri a b c d
              <lb/>
            centrum: </s>
            <s xml:space="preserve">erit ex 8. </s>
            <s xml:space="preserve">Archimedis de centro grauitatis plano
              <lb/>
            rum h fad f
              <emph style="sc">K</emph>
            , ut triangulum b c d ad triangulum a b d: </s>
            <s xml:space="preserve">ut
              <lb/>
            autem b c d triangulum ad triangulum a b d, ita pyramis
              <lb/>
            b c d e ad pyramidem a b d e. </s>
            <s xml:space="preserve">ergo
              <lb/>
              <anchor type="figure" xlink:label="fig-0169-01a" xlink:href="fig-0169-01"/>
            linea lg ad g m erit, ut pyramis
              <lb/>
            b c d e ad pyramidé a b d e. </s>
            <s xml:space="preserve">ex quo
              <lb/>
            ſequitur, ut totius pyramidis
              <lb/>
            a b c d e punctum g ſit grauitatis
              <lb/>
            centrum. </s>
            <s xml:space="preserve">Rurſus ſit pyramis ba-
              <lb/>
            ſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axem f g: </s>
            <s xml:space="preserve">diuidaturq; </s>
            <s xml:space="preserve">axis in pũ
              <lb/>
            cto h, ita ut fh ad h g triplam habe
              <lb/>
            at proportionem. </s>
            <s xml:space="preserve">Dico h grauita-
              <lb/>
            tis centrũ eſſe pyramidis a b c d e f. </s>
            <s xml:space="preserve">
              <lb/>
            iungatur enim e b: </s>
            <s xml:space="preserve">intelligaturq; </s>
            <s xml:space="preserve">
              <lb/>
            pyramis, cuius uertex f, & </s>
            <s xml:space="preserve">baſis
              <lb/>
            triangulum a b e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia pyramis
              <lb/>
            intelligatur eundem uerticem ha-
              <lb/>
            bens, & </s>
            <s xml:space="preserve">baſim b c d e quadrilaterũ: </s>
            <s xml:space="preserve">
              <lb/>
            ſit autem pyramidis a b e faxis f
              <emph style="sc">K</emph>
            ,
              <lb/>
            & </s>
            <s xml:space="preserve">grauitatis centrum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pyrami
              <lb/>
            dis b c d e faxis f m, & </s>
            <s xml:space="preserve">centrum gra
              <lb/>
            uitatis n: </s>
            <s xml:space="preserve">iunganturq; </s>
            <s xml:space="preserve">
              <emph style="sc">K</emph>
            m, l n; </s>
            <s xml:space="preserve">
              <lb/>
            quæ per puncta g h tranſibunt. </s>
            <s xml:space="preserve">
              <lb/>
            Rurſus eodem modo, quo ſup ra,
              <lb/>
            demonſtrabimus lineas K g m, l h n ſibiipſis æ quidiſtare</s>
          </p>
        </div>
      </text>
    </echo>