Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (12) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3422" xml:space="preserve">
              <pb o="12" file="0135" n="135" rhead="DE CENTRO GRA VIT. SOLID."/>
            Itaque ſolidi parallelepipedi y γ centrum grauitatis eſt in
              <lb/>
            linea δ: </s>
            <s xml:id="echoid-s3423" xml:space="preserve">ſolidi u β centrum eſt in linea ε η: </s>
            <s xml:id="echoid-s3424" xml:space="preserve">& </s>
            <s xml:id="echoid-s3425" xml:space="preserve">ſolidi s z in li
              <lb/>
            nea η m, quæ quidem lineæ axes ſunt, cum planorum oppo
              <lb/>
            ſitorum centra coniungant. </s>
            <s xml:id="echoid-s3426" xml:space="preserve">ergo magnitudinis ex his ſoli
              <lb/>
            dis compoſitæ centrum grauitatis eſt in linea δ m, quod ſit
              <lb/>
            θ; </s>
            <s xml:id="echoid-s3427" xml:space="preserve">& </s>
            <s xml:id="echoid-s3428" xml:space="preserve">iuncta θ o producatur: </s>
            <s xml:id="echoid-s3429" xml:space="preserve">à puncto autem h ducatur h μ
              <lb/>
            ipſi m κ æquidiſtans, quæ cum θ o in μ conueniat. </s>
            <s xml:id="echoid-s3430" xml:space="preserve">triangu
              <lb/>
            lum igitur g h κ ad omnia triangula g z r, r β t, t γ x, x δ k,
              <lb/>
            κ δ y, y u, u s, s α h eandem habet proportionem, quam h m
              <lb/>
            ad m q; </s>
            <s xml:id="echoid-s3431" xml:space="preserve">hoc eſt, quam μ θ ad θ λ: </s>
            <s xml:id="echoid-s3432" xml:space="preserve">nam ſi h m, μ θ produci in
              <lb/>
            telligantur, quouſque coeant; </s>
            <s xml:id="echoid-s3433" xml:space="preserve">erit ob linearum q y, m k æ-
              <lb/>
            quidiſtantiam, ut h q ad q m, ita μ λ ad ad λ θ: </s>
            <s xml:id="echoid-s3434" xml:space="preserve">& </s>
            <s xml:id="echoid-s3435" xml:space="preserve">componen
              <lb/>
            do, ut h m ad m q, ita μ θ ad θ λ. </s>
            <s xml:id="echoid-s3436" xml:space="preserve">linea uero θ o maior eſt,
              <lb/>
            quàm θ λ: </s>
            <s xml:id="echoid-s3437" xml:space="preserve">habebit igitur μ θ ad θ λ maiorem proportio-
              <lb/>
              <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            nem, quàm ad θ o. </s>
            <s xml:id="echoid-s3438" xml:space="preserve">quare triangulum etiam g h k ad omnia
              <lb/>
            iam dicta triangula maiorem proportionẽ habebit, quàm
              <lb/>
            μ θ ad θ o. </s>
            <s xml:id="echoid-s3439" xml:space="preserve">ſed ut triangulũ g h k ad omnia triangula, ita to-
              <lb/>
            tũ priſma a f ad omnia priſmata g z r, r β t, t γ x, x δ k, k δ y,
              <lb/>
            y u, u s, s α h: </s>
            <s xml:id="echoid-s3440" xml:space="preserve">quoniam enim ſolida parallelepipeda æque al
              <lb/>
            ta, eandem inter ſe proportionem habent, quam baſes; </s>
            <s xml:id="echoid-s3441" xml:space="preserve">ut
              <lb/>
            ex trigeſimaſecunda undecimi elementorum conſtat. </s>
            <s xml:id="echoid-s3442" xml:space="preserve">ſunt
              <lb/>
              <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
                <lb/>
              cimi</note>
            autem ſolida parallelepipeda priſmatum triangulares ba-
              <lb/>
            ſes habentium dupla: </s>
            <s xml:id="echoid-s3443" xml:space="preserve">ſequitur, ut etiam huiuſmodi priſ-
              <lb/>
              <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            matainter ſe ſint, ſicut eorum baſes. </s>
            <s xml:id="echoid-s3444" xml:space="preserve">ergo totum priſma ad
              <lb/>
            omnia priſmata maiorem proportionem habet, quam μ θ
              <lb/>
            ad θ o: </s>
            <s xml:id="echoid-s3445" xml:space="preserve">& </s>
            <s xml:id="echoid-s3446" xml:space="preserve">diuidendo ſolida parallelepipeda y γ, u β, s z ad o-
              <lb/>
              <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
                <lb/>
              apud Cã
                <lb/>
              panum.</note>
            mnia prifmata proportionem habent maiorem, quàm μ o
              <lb/>
            ad o θ. </s>
            <s xml:id="echoid-s3447" xml:space="preserve">fiat @ o ad o θ, ut folida parallelepipeda y γ, u β, s z ad
              <lb/>
            omnia priſmata. </s>
            <s xml:id="echoid-s3448" xml:space="preserve">Itaque cum à priſmate a f, cuius cẽtrum
              <lb/>
            grauitatis eſt o, auferatur magnitudo ex ſolidis parallelepi
              <lb/>
            pedis y γ, u β, s z conſtans: </s>
            <s xml:id="echoid-s3449" xml:space="preserve">atque ipfius grauitatis centrum
              <lb/>
            ſit θ: </s>
            <s xml:id="echoid-s3450" xml:space="preserve">reliquæ magnitudinis, quæ ex omnibus priſmatibus
              <lb/>
            conſtat, grauitatis centrum erit in linea θ o producta: </s>
            <s xml:id="echoid-s3451" xml:space="preserve">& </s>
            <s xml:id="echoid-s3452" xml:space="preserve">
              <lb/>
            in puncto ν, ex o ctaua propoſitione eiuſdem libri </s>
          </p>
        </div>
      </text>
    </echo>