Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of handwritten notes

< >
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <pb file="0202" n="202" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:id="echoid-s5060" xml:space="preserve">ABSCINDATVR à portione conoidis rectanguli
              <lb/>
            a b c alia portio e b f, plano baſi æquidiſtante: </s>
            <s xml:id="echoid-s5061" xml:space="preserve">& </s>
            <s xml:id="echoid-s5062" xml:space="preserve">eadem
              <lb/>
            portio ſecetur alio plano per axem; </s>
            <s xml:id="echoid-s5063" xml:space="preserve">ut ſuperficiei ſectio ſit
              <lb/>
            parabole a b c: </s>
            <s xml:id="echoid-s5064" xml:space="preserve">planorũ portiones abſcindentium rectæ
              <lb/>
            lineæ a c, e f: </s>
            <s xml:id="echoid-s5065" xml:space="preserve">axis autem portionis, & </s>
            <s xml:id="echoid-s5066" xml:space="preserve">ſectionis diameter
              <lb/>
            b d; </s>
            <s xml:id="echoid-s5067" xml:space="preserve">quam linea e fin puncto g ſecet. </s>
            <s xml:id="echoid-s5068" xml:space="preserve">Dico portionem co-
              <lb/>
            noidis a b c ad portionem e b f duplam proportionem ha-
              <lb/>
            bere eius, quæ eſt baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5069" xml:space="preserve">uel axis d b ad b g
              <lb/>
            axem. </s>
            <s xml:id="echoid-s5070" xml:space="preserve">Intelligantur enim duo coni, ſeu coni portiones
              <lb/>
            a b c, e b f, eãdem baſim, quam portiones conoidis, & </s>
            <s xml:id="echoid-s5071" xml:space="preserve">æqua
              <lb/>
            lem habentes altitudinem. </s>
            <s xml:id="echoid-s5072" xml:space="preserve">& </s>
            <s xml:id="echoid-s5073" xml:space="preserve">quoniam a b c portio conoi
              <lb/>
            dis ſeſquialtera eſt coni, ſeu portionis coni a b c; </s>
            <s xml:id="echoid-s5074" xml:space="preserve">& </s>
            <s xml:id="echoid-s5075" xml:space="preserve">portio
              <lb/>
            e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
              <lb/>
              <figure xlink:label="fig-0202-01" xlink:href="fig-0202-01a" number="149">
                <image file="0202-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0202-01"/>
              </figure>
            monſtrauit Archimedes in propoſitionibus 23, & </s>
            <s xml:id="echoid-s5076" xml:space="preserve">24 libri
              <lb/>
            de conoidibus, & </s>
            <s xml:id="echoid-s5077" xml:space="preserve">ſphæroidibus: </s>
            <s xml:id="echoid-s5078" xml:space="preserve">erit conoidis portio ad
              <lb/>
            conoidis portionem, ut conus ad conum, uel ut coni por-
              <lb/>
            tio ad coni portionem. </s>
            <s xml:id="echoid-s5079" xml:space="preserve">Sed conus, uel coni portio a b c ad
              <lb/>
            conum, uel coni portionem e b f compoſitam proportio-
              <lb/>
            nem habet ex proportione baſis a c ad baſim e f, & </s>
            <s xml:id="echoid-s5080" xml:space="preserve">ex pro-
              <lb/>
            portione altitudinis coni, uel coni portionis a b c ad alti-
              <lb/>
            tudinem ipſius e b f, ut nos demonſtrauimus in com men-
              <lb/>
            tariis in undecimam propoſitionem eiuſdem libri A rchi-
              <lb/>
            medis: </s>
            <s xml:id="echoid-s5081" xml:space="preserve">altitudo autem ad altitudinem eſt, ut axis ad axem.
              <lb/>
            </s>
            <s xml:id="echoid-s5082" xml:space="preserve">quod quidem in conis rectis perſpicuum eſt, in ſcalenis </s>
          </p>
        </div>
      </text>
    </echo>