Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3931
"
xml:space
="
preserve
">
<
pb
file
="
0158
"
n
="
158
"
rhead
="
FED. COMMANDINI
"/>
ut altitudo ad altitudinem & </
s
>
<
s
xml:id
="
echoid-s3932
"
xml:space
="
preserve
">componendo conuertendo
<
lb
/>
que ſolidum a b g h, hoc eſt ſolidum a b c d ipſi æquale, ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-01
"
xlink:href
="
note-0158-01a
"
xml:space
="
preserve
">7. quinti.</
note
>
ſolidum a b e f, ut altitudo ſolidi a b c d ad ſolidi a b e f al-
<
lb
/>
titudinem.</
s
>
<
s
xml:id
="
echoid-s3933
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3934
"
xml:space
="
preserve
">Sint ſolida parallelepipeda a b, c d in æqualibus baſibus
<
lb
/>
conſtituta: </
s
>
<
s
xml:id
="
echoid-s3935
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s3936
"
xml:space
="
preserve
">b e altitudo ſolidi a b: </
s
>
<
s
xml:id
="
echoid-s3937
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3938
"
xml:space
="
preserve
">ſolidi c d altitudo
<
lb
/>
d f; </
s
>
<
s
xml:id
="
echoid-s3939
"
xml:space
="
preserve
">quæ quidem maior ſit, quàm b e. </
s
>
<
s
xml:id
="
echoid-s3940
"
xml:space
="
preserve
">Dico ſolidum a b ad
<
lb
/>
ſolidum c d eandem habere proportionem, quam be ad
<
lb
/>
d f. </
s
>
<
s
xml:id
="
echoid-s3941
"
xml:space
="
preserve
">abſcindatur enim à linea d f æqualis ipſi b e, quæ ſit g f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3942
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3943
"
xml:space
="
preserve
">per g ducatur planum ſecans ſolidum c d; </
s
>
<
s
xml:id
="
echoid-s3944
"
xml:space
="
preserve
">quod baſibus
<
lb
/>
æquidiſtet, faciatq; </
s
>
<
s
xml:id
="
echoid-s3945
"
xml:space
="
preserve
">ſectionẽ h K. </
s
>
<
s
xml:id
="
echoid-s3946
"
xml:space
="
preserve
">erunt ſolida a b, c k æque
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-02
"
xlink:href
="
note-0158-02a
"
xml:space
="
preserve
">31. unde
<
lb
/>
cimi</
note
>
alta inter
<
lb
/>
<
figure
xlink:label
="
fig-0158-01
"
xlink:href
="
fig-0158-01a
"
number
="
112
">
<
image
file
="
0158-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0158-01
"/>
</
figure
>
ſe æqualia
<
lb
/>
cũ æqua-
<
lb
/>
les baſes
<
lb
/>
habeant.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3947
"
xml:space
="
preserve
">Sed ſolidũ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-03
"
xlink:href
="
note-0158-03a
"
xml:space
="
preserve
">18. huius</
note
>
h d ad ſoli
<
lb
/>
dum c _K_
<
lb
/>
eſt, ut alti
<
lb
/>
tudo d g
<
lb
/>
ad g f alti-
<
lb
/>
tudinẽ ſe
<
lb
/>
catur enim ſolidum c d plano baſi
<
lb
/>
<
figure
xlink:label
="
fig-0158-02
"
xlink:href
="
fig-0158-02a
"
number
="
113
">
<
image
file
="
0158-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0158-02
"/>
</
figure
>
bus æquidiſtante: </
s
>
<
s
xml:id
="
echoid-s3948
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3949
"
xml:space
="
preserve
">rurſus cõpo-
<
lb
/>
nendo, conuertendoq; </
s
>
<
s
xml:id
="
echoid-s3950
"
xml:space
="
preserve
">ſolidũ c _k_
<
lb
/>
ad ſolidum c d, ut g f ad fd. </
s
>
<
s
xml:id
="
echoid-s3951
"
xml:space
="
preserve
">ergo
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-04
"
xlink:href
="
note-0158-04a
"
xml:space
="
preserve
">7. quinti.</
note
>
ſolidum a b, quod eſt æquale ipſi
<
lb
/>
c k ad ſolidum c d eam proportio
<
lb
/>
nem habet, quam altitudo g f, hoc
<
lb
/>
eſt b e ad d f altitudinem.</
s
>
<
s
xml:id
="
echoid-s3952
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3953
"
xml:space
="
preserve
">Sint deinde ſolida parallelepipe
<
lb
/>
da a b, a c in eadem baſi; </
s
>
<
s
xml:id
="
echoid-s3954
"
xml:space
="
preserve
">quorum
<
lb
/>
axes d e, ſ e cum ipſa æquales </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>