Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
40
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0070
"
n
="
70
"
rhead
="
ARCHIMEDIS
"/>
dem circa e z diametrum; </
s
>
<
s
xml:space
="
preserve
">a t d uero circa diametrum t h;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">
<
anchor
type
="
note
"
xlink:label
="
note-0070-01a
"
xlink:href
="
note-0070-01
"/>
quæ ſimiles ſint portioni a b l. </
s
>
<
s
xml:space
="
preserve
">tranſibit igitur a e i coni
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-02a
"
xlink:href
="
note-0070-02
"/>
ſectio per _K_: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quæ ab r ducta eſt perpendicularis ad b d,
<
lb
/>
ipſam a e i ſecabit. </
s
>
<
s
xml:space
="
preserve
">ſecet in punctis y g: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">per y g ducan
<
lb
/>
tur ipſi b d æquidiſtantes p y q, o g n, quæ ſecent a t d in
<
lb
/>
f x. </
s
>
<
s
xml:space
="
preserve
">ducantur poſtremo, & </
s
>
<
s
xml:space
="
preserve
">p χ, o φ contingentes ſectionẽ
<
lb
/>
a p o l in punctis p o. </
s
>
<
s
xml:space
="
preserve
">cũ
<
unsure
/>
ergo tres portiones ſint a p o l,
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-03a
"
xlink:href
="
note-0070-03
"/>
a e i, a t d, contentæ rectis lineis, & </
s
>
<
s
xml:space
="
preserve
">rectangulorum cono-
<
lb
/>
rum ſectionibus; </
s
>
<
s
xml:space
="
preserve
">rectæq, ſimiles, & </
s
>
<
s
xml:space
="
preserve
">inæquales, quæ contin
<
lb
/>
gunt ſe ſe ſuper unamquanque baſim: </
s
>
<
s
xml:space
="
preserve
">à puncto autem n
<
lb
/>
ſurſum ducta ſit n x g o; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">à q ipſa q fy p: </
s
>
<
s
xml:space
="
preserve
">habebit o g ad
<
lb
/>
g x proportionem compoſitam ex proportione, quam ha
<
lb
/>
bet i l ad l a; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ex proportione, quam a d habet ad d i.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Sed i l ad l a
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0070-01a
"
xlink:href
="
fig-0070-01
"/>
habet eandem,
<
lb
/>
quam duo ad
<
lb
/>
quinque. </
s
>
<
s
xml:space
="
preserve
">ete-
<
lb
/>
nim c b ad b d
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-04a
"
xlink:href
="
note-0070-04
"/>
eſt, ut ſex ad
<
lb
/>
quĩdecim; </
s
>
<
s
xml:space
="
preserve
">hoc
<
lb
/>
eſt ut duo ad
<
lb
/>
quinque: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ut
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-05a
"
xlink:href
="
note-0070-05
"/>
c b ad b d, ita
<
lb
/>
e b ad b a: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
d z ad d a. </
s
>
<
s
xml:space
="
preserve
">ha-
<
lb
/>
rum autẽ d z,
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-06a
"
xlink:href
="
note-0070-06
"/>
d a duplæ ſunt
<
lb
/>
ipſæ l i, l a: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0070-07a
"
xlink:href
="
note-0070-07
"/>
a d ad d i eã pro
<
lb
/>
portionem habet, quam quinque ad unum. </
s
>
<
s
xml:space
="
preserve
">ſed proportio
<
lb
/>
compoſita ex proportione, quam habet duo ad quinque;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ex proportione, quam quinque ad unum; </
s
>
<
s
xml:space
="
preserve
">eſt eadem,
<
lb
/>
quam habent duo ad unum: </
s
>
<
s
xml:space
="
preserve
">duo autem ad unum duplam
<
lb
/>
proportionem habent. </
s
>
<
s
xml:space
="
preserve
">dupla eſt igitur g b ipſius g x: </
s
>
<
s
xml:space
="
preserve
">&</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>