Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3347" xml:space="preserve">
              <pb file="0132" n="132" rhead="FED. COMMANDINI"/>
            centrum z: </s>
            <s xml:id="echoid-s3348" xml:space="preserve">parallelogram mi a d, θ: </s>
            <s xml:id="echoid-s3349" xml:space="preserve">parallelogrammi f g, φ:
              <lb/>
            </s>
            <s xml:id="echoid-s3350" xml:space="preserve">parallelogrammi d h, χ: </s>
            <s xml:id="echoid-s3351" xml:space="preserve">& </s>
            <s xml:id="echoid-s3352" xml:space="preserve">
              <lb/>
              <figure xlink:label="fig-0132-01" xlink:href="fig-0132-01a" number="88">
                <image file="0132-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0132-01"/>
              </figure>
            parallelogrammi c g centrũ
              <lb/>
            ψ: </s>
            <s xml:id="echoid-s3353" xml:space="preserve">atque erit ω punctum me
              <lb/>
            dium uniuſcuiuſque axis, ui
              <lb/>
            delicet eius lineæ, quæ oppo
              <lb/>
            ſitorum planorũ centra con
              <lb/>
            iungit. </s>
            <s xml:id="echoid-s3354" xml:space="preserve">Dico ω centrum effe
              <lb/>
            grauitatis ipſius ſolidi. </s>
            <s xml:id="echoid-s3355" xml:space="preserve">eſt
              <lb/>
            enim, ut demonſtrauimus,
              <lb/>
              <note position="left" xlink:label="note-0132-01" xlink:href="note-0132-01a" xml:space="preserve">6. huius</note>
            ſolidi a f centrum grauitatis
              <lb/>
            in plano K n; </s>
            <s xml:id="echoid-s3356" xml:space="preserve">quod oppoſi-
              <lb/>
            tis planis a d, g f æ quidiſtans
              <lb/>
            reliquorum planorum late-
              <lb/>
            ra biſariam diuidit: </s>
            <s xml:id="echoid-s3357" xml:space="preserve">& </s>
            <s xml:id="echoid-s3358" xml:space="preserve">fimili
              <lb/>
            rationeidem centrum eſt in plano o r, æ quidiſtante planis
              <lb/>
            a e, b f oppo ſitis. </s>
            <s xml:id="echoid-s3359" xml:space="preserve">ergo in communi ipſorum fectione: </s>
            <s xml:id="echoid-s3360" xml:space="preserve">ui-
              <lb/>
            delicet in linea y z. </s>
            <s xml:id="echoid-s3361" xml:space="preserve">Sed eſt etiam in plano t u, quod quidẽ
              <lb/>
            y z ſecat in ω. </s>
            <s xml:id="echoid-s3362" xml:space="preserve">Conſtat igitur centrum grauitatis ſolidi eſſe
              <lb/>
            punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
              <lb/>
            planorum oppoſitorum centra coniungunt.</s>
            <s xml:id="echoid-s3363" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3364" xml:space="preserve">Sit aliud prima a f; </s>
            <s xml:id="echoid-s3365" xml:space="preserve">& </s>
            <s xml:id="echoid-s3366" xml:space="preserve">in eo plana, quæ opponuntur, tri-
              <lb/>
            angula a b c, d e f: </s>
            <s xml:id="echoid-s3367" xml:space="preserve">diuiſisq; </s>
            <s xml:id="echoid-s3368" xml:space="preserve">bifariam parallelogrammorum
              <lb/>
            lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
              <lb/>
            ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
              <lb/>
            triangulum g h k æ quale, & </s>
            <s xml:id="echoid-s3369" xml:space="preserve">ſimile ipſis a b c, d e f. </s>
            <s xml:id="echoid-s3370" xml:space="preserve">Rurſus
              <lb/>
            diuidatur a b bifariam in l: </s>
            <s xml:id="echoid-s3371" xml:space="preserve">& </s>
            <s xml:id="echoid-s3372" xml:space="preserve">iuncta c l per ipſam, & </s>
            <s xml:id="echoid-s3373" xml:space="preserve">per
              <lb/>
            c _K_ f planum ducatur priſma ſecans, cuius, & </s>
            <s xml:id="echoid-s3374" xml:space="preserve">parallelogrã
              <lb/>
            mi a e communis ſcctio ſit l m n. </s>
            <s xml:id="echoid-s3375" xml:space="preserve">diuidet pun ctum m li-
              <lb/>
            neam g h bifariam; </s>
            <s xml:id="echoid-s3376" xml:space="preserve">& </s>
            <s xml:id="echoid-s3377" xml:space="preserve">ita n diuidet lineam d e: </s>
            <s xml:id="echoid-s3378" xml:space="preserve">quoniam
              <lb/>
            triangula a c l, g k m, d f n æ qualia ſunt, & </s>
            <s xml:id="echoid-s3379" xml:space="preserve">ſimilia, ut ſu pra
              <lb/>
              <note position="left" xlink:label="note-0132-02" xlink:href="note-0132-02a" xml:space="preserve">5. huius</note>
            demonſtrauimus. </s>
            <s xml:id="echoid-s3380" xml:space="preserve">Iam ex iis, quæ tradita ſunt, conſtat cen
              <lb/>
            trum greuitatis priſmatis in plano g h k contineri. </s>
            <s xml:id="echoid-s3381" xml:space="preserve">Dico
              <lb/>
            ipſum eſſe in linea k m. </s>
            <s xml:id="echoid-s3382" xml:space="preserve">Si enim fieri poteſt, ſit o centrum;</s>
            <s xml:id="echoid-s3383" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>