Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
p
>
<
s
xml:id
="
echoid-s3817
"
xml:space
="
preserve
">
<
pb
file
="
0152
"
n
="
152
"
rhead
="
FED. COMMANDINI
"/>
da figura, & </
s
>
<
s
xml:id
="
echoid-s3818
"
xml:space
="
preserve
">altera circumſcribatur ex cylindris, uel cylin-
<
lb
/>
dri portionibus, ſicuti dictum eſt, ita ut exceſſus, quo figu-
<
lb
/>
ra circumſcripta inſcriptam ſuperat, ſit ſolido g minor.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3819
"
xml:space
="
preserve
">Itaque centrum grauitatis cylindri, uel cylindri portionis
<
lb
/>
q r eſt in linea p o; </
s
>
<
s
xml:id
="
echoid-s3820
"
xml:space
="
preserve
">cylindri, uel cylindri portionis st cen-
<
lb
/>
trum in linea on; </
s
>
<
s
xml:id
="
echoid-s3821
"
xml:space
="
preserve
">centrum u x in linea n m; </
s
>
<
s
xml:id
="
echoid-s3822
"
xml:space
="
preserve
">y z in m b; </
s
>
<
s
xml:id
="
echoid-s3823
"
xml:space
="
preserve
">η @
<
lb
/>
in 1k; </
s
>
<
s
xml:id
="
echoid-s3824
"
xml:space
="
preserve
">λ μ in K h; </
s
>
<
s
xml:id
="
echoid-s3825
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3826
"
xml:space
="
preserve
">denique ν π centrum in h d. </
s
>
<
s
xml:id
="
echoid-s3827
"
xml:space
="
preserve
">ergo figu-
<
lb
/>
<
figure
xlink:label
="
fig-0152-01
"
xlink:href
="
fig-0152-01a
"
number
="
105
">
<
image
file
="
0152-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0152-01
"/>
</
figure
>
ræ inſcriptæ centrum eſt in linea p d. </
s
>
<
s
xml:id
="
echoid-s3828
"
xml:space
="
preserve
">Sitautem ρ: </
s
>
<
s
xml:id
="
echoid-s3829
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3830
"
xml:space
="
preserve
">iun-
<
lb
/>
cta ρ e protendatur, ut cum linea, quæ à pũctoc ducta fue-
<
lb
/>
rit axi æquidiſtans, conueniat in σ. </
s
>
<
s
xml:id
="
echoid-s3831
"
xml:space
="
preserve
">erit σ ζ ad ρ e, ut c d
<
lb
/>
ad d f: </
s
>
<
s
xml:id
="
echoid-s3832
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3833
"
xml:space
="
preserve
">conus, ſeu coni portio ad exceſſum, quo circum-
<
lb
/>
ſcripta figura inſcriptam ſuperat, habebit maiorem pro-
<
lb
/>
portionem, quàm σ ζ ad ρ e. </
s
>
<
s
xml:id
="
echoid-s3834
"
xml:space
="
preserve
">ergo ad partem exceſſus, quæ
<
lb
/>
intra ipſius ſuperficiem comprehenditur, multo maiorem
<
lb
/>
proportionem habebit. </
s
>
<
s
xml:id
="
echoid-s3835
"
xml:space
="
preserve
">habeat eam, quam τ ρ ad ρ e. </
s
>
<
s
xml:id
="
echoid-s3836
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>