Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
42
">
<
pb
file
="
0074
"
n
="
74
"
rhead
="
ARCHIMEDIS
"/>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
43
">
<
head
xml:space
="
preserve
">LEMMA II.</
head
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">Sint duæ portionis ſimiles, contentæ rectis lineis, & </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
rectangulorum conorum ſectionibus; </
s
>
<
s
xml:space
="
preserve
">a b c quidem ma-
<
lb
/>
ior, cuius diameter b d; </
s
>
<
s
xml:space
="
preserve
">e f c uero minor, cuius diameter
<
lb
/>
fg: </
s
>
<
s
xml:space
="
preserve
">aptenturq; </
s
>
<
s
xml:space
="
preserve
">inter ſeſe, ita ut maior minorem includat
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">ſint earum baſes a c, e c in eadem recta linea, ut idẽ
<
lb
/>
punctum c ſit utriuſque terminus: </
s
>
<
s
xml:space
="
preserve
">ſumatur deinde in ſe
<
lb
/>
ctione a b c quodlibet punctum b: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iungatur h c. </
s
>
<
s
xml:space
="
preserve
">Di
<
lb
/>
co lineam h c ad partem ſui ipſius, quæ inter c, & </
s
>
<
s
xml:space
="
preserve
">ſe-
<
lb
/>
ctionem e f c interiicitur, eam proportionẽ habere, quam
<
lb
/>
habet a c ad c e.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_
<
emph
style
="
sc
">Dvcatvr</
emph
>
_ b c, quæ tranſibit per f. </
s
>
<
s
xml:space
="
preserve
">quoniam enim portiones
<
lb
/>
ſimiles ſunt, diametri cú baſibus æquales continent angulos. </
s
>
<
s
xml:space
="
preserve
">quare
<
lb
/>
æquidiſtant inter ſe ſe b d, f g: </
s
>
<
s
xml:space
="
preserve
">éſtq; </
s
>
<
s
xml:space
="
preserve
">b d ad a c, ut f g ad e c:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">permu-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0074-01a
"
xlink:href
="
fig-0074-01
"/>
tando b d ad
<
lb
/>
f g, ut a c ad
<
lb
/>
c e: </
s
>
<
s
xml:space
="
preserve
">hoc eſt
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0074-01a
"
xlink:href
="
note-0074-01
"/>
ut earum di-
<
lb
/>
midiæ d c ad
<
lb
/>
c g. </
s
>
<
s
xml:space
="
preserve
">ergo ex
<
lb
/>
antecedēti lé
<
lb
/>
mate ſequi-
<
lb
/>
tur lineá b c
<
lb
/>
per punctum
<
lb
/>
f tranſire.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Ducatur præ
<
lb
/>
terea à puncto h ad diametrum b d linea h K, æquidiſtans baſi
<
lb
/>
a c: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iuncta k c, quæ diametrum f g ſecet in l; </
s
>
<
s
xml:space
="
preserve
">per l ducatur</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>