Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
56
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0098
"
n
="
98
"
rhead
="
ARCHIMEDIS
"/>
ſuperficiem recto, ſit portionis ſectio anzg; </
s
>
<
s
xml:space
="
preserve
">ſuperficiei
<
lb
/>
humidi ez: </
s
>
<
s
xml:space
="
preserve
">a-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0098-01a
"
xlink:href
="
fig-0098-01
"/>
xis portionis,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">ſectionis dia-
<
lb
/>
meter b d: </
s
>
<
s
xml:space
="
preserve
">ſece-
<
lb
/>
turq, b d in pũ-
<
lb
/>
ctis _K_r, ſicuti
<
lb
/>
prius; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">duca-
<
lb
/>
tur n l quidem
<
lb
/>
ipſi e z æquidi-
<
lb
/>
ſtans, quæ con-
<
lb
/>
tingat ſectionẽ
<
lb
/>
a n z g in n; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
n t æquidiſtans
<
lb
/>
ipſi b d; </
s
>
<
s
xml:space
="
preserve
">n s ue-
<
lb
/>
ro ad b d perpẽ
<
lb
/>
dicularis. </
s
>
<
s
xml:space
="
preserve
">Itaq;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quoniam portio ad humidum in grauitate eam proportio
<
lb
/>
nem habet, quam quadratum, quod fit à linea ψ ad quadra
<
lb
/>
tum b d: </
s
>
<
s
xml:space
="
preserve
">erit ψ ipſi n t æqualis: </
s
>
<
s
xml:space
="
preserve
">quod ſimiliter demonſtrabi
<
lb
/>
tur, ut ſuperius. </
s
>
<
s
xml:space
="
preserve
">quare & </
s
>
<
s
xml:space
="
preserve
">n t eſt æqualis ipſi u i. </
s
>
<
s
xml:space
="
preserve
">portiones
<
lb
/>
igitur a u q, e n z inter ſe ſunt æquales. </
s
>
<
s
xml:space
="
preserve
">Et cum in æquali-
<
lb
/>
bus, & </
s
>
<
s
xml:space
="
preserve
">ſimilibus portionibus a u q l, a n z g ductæ ſint a q
<
lb
/>
e z, quæ æquales portiones auferunt; </
s
>
<
s
xml:space
="
preserve
">illa quidem ab extre
<
lb
/>
mitate baſis; </
s
>
<
s
xml:space
="
preserve
">hæc autem non ab extremitate: </
s
>
<
s
xml:space
="
preserve
">minorem fa-
<
lb
/>
ciet acutum angulum cum portionis diametro, quæ ab ex-
<
lb
/>
tremitate baſis ducitur. </
s
>
<
s
xml:space
="
preserve
">At triangulorum n l s, u ω c angu
<
lb
/>
lus ad l angulo ad ω maior eſt. </
s
>
<
s
xml:space
="
preserve
">ergo b s minor erit, quam
<
lb
/>
b c: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſ r maior, quàm c r: </
s
>
<
s
xml:space
="
preserve
">ideoq; </
s
>
<
s
xml:space
="
preserve
">n χ maior, quam u h; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
χ t minor, quàm h i. </
s
>
<
s
xml:space
="
preserve
">Quoniam igitur u y dupla eſt ipſius
<
lb
/>
y i; </
s
>
<
s
xml:space
="
preserve
">conſtat n χ maiorem eſſe, quàm duplã χ t. </
s
>
<
s
xml:space
="
preserve
">Sit n m dupla
<
lb
/>
ipſius m t. </
s
>
<
s
xml:space
="
preserve
">perſpicuũ eſt ex iis, quæ dicta ſunt, non manere
<
lb
/>
portionẽ; </
s
>
<
s
xml:space
="
preserve
">ſed in clinari, donec eius baſis contingat ſuperfi-
<
lb
/>
ciem humidi: </
s
>
<
s
xml:space
="
preserve
">contingat autem in puncto uno, ut patet in fi</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>