Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(19)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div230
"
type
="
section
"
level
="
1
"
n
="
78
">
<
pb
o
="
19
"
file
="
0149
"
n
="
149
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
figure
number
="
102
">
<
image
file
="
0149-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0149-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
head
xml:id
="
echoid-head86
"
xml:space
="
preserve
">THEOREMA X. PROPOSITIO XIIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3761
"
xml:space
="
preserve
">Cuiuslibet pyramidis, & </
s
>
<
s
xml:id
="
echoid-s3762
"
xml:space
="
preserve
">cuiuslibet coni, uel
<
lb
/>
coni portionis, centrum grauitatis in axe cõſiſtit.</
s
>
<
s
xml:id
="
echoid-s3763
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3764
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c: </
s
>
<
s
xml:id
="
echoid-s3765
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3766
"
xml:space
="
preserve
">axis d e.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3767
"
xml:space
="
preserve
">Dico in linea d e ipſius grauitatis centrum ineſſe. </
s
>
<
s
xml:id
="
echoid-s3768
"
xml:space
="
preserve
">Si enim
<
lb
/>
fieri poteſt, ſit centrum f: </
s
>
<
s
xml:id
="
echoid-s3769
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3770
"
xml:space
="
preserve
">ab f ducatur ad baſim pyrami
<
lb
/>
dis linea f g, axi æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s3771
"
xml:space
="
preserve
">iunctaq; </
s
>
<
s
xml:id
="
echoid-s3772
"
xml:space
="
preserve
">e g ad latera trian-
<
lb
/>
guli a b c producatur in h. </
s
>
<
s
xml:id
="
echoid-s3773
"
xml:space
="
preserve
">quam uero proportionem ha-
<
lb
/>
bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
<
lb
/>
quo K: </
s
>
<
s
xml:id
="
echoid-s3774
"
xml:space
="
preserve
">inſcribaturq; </
s
>
<
s
xml:id
="
echoid-s3775
"
xml:space
="
preserve
">in pyramide ſolida figura, & </
s
>
<
s
xml:id
="
echoid-s3776
"
xml:space
="
preserve
">altera cir
<
lb
/>
cumſcribatur ex priſmatibus æqualem habentibus altitu-
<
lb
/>
dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
<
lb
/>
dine, quæ ſolido _k_ ſit minor. </
s
>
<
s
xml:id
="
echoid-s3777
"
xml:space
="
preserve
">Et quoniam in pyramide pla
<
lb
/>
num baſi æquidiſtans ductum ſectionem facit figuram ſi-
<
lb
/>
milem ei, quæ eſt baſis; </
s
>
<
s
xml:id
="
echoid-s3778
"
xml:space
="
preserve
">centrumq; </
s
>
<
s
xml:id
="
echoid-s3779
"
xml:space
="
preserve
">grauitatis in axe haben
<
lb
/>
tem: </
s
>
<
s
xml:id
="
echoid-s3780
"
xml:space
="
preserve
">erit priſmatis s t grauitatis centrũ in linear q; </
s
>
<
s
xml:id
="
echoid-s3781
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis u x centrum in linea q p; </
s
>
<
s
xml:id
="
echoid-s3782
"
xml:space
="
preserve
">priſmatis y z in linea p o; </
s
>
<
s
xml:id
="
echoid-s3783
"
xml:space
="
preserve
">
<
lb
/>
priſmatis η θ in l_i_nea o n; </
s
>
<
s
xml:id
="
echoid-s3784
"
xml:space
="
preserve
">priſmatis λ μ in linea n m; </
s
>
<
s
xml:id
="
echoid-s3785
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis ν π in m l; </
s
>
<
s
xml:id
="
echoid-s3786
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3787
"
xml:space
="
preserve
">denique priſmatis ρ σ in l e. </
s
>
<
s
xml:id
="
echoid-s3788
"
xml:space
="
preserve
">quare </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>