Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 64
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 67
[Note]
Page: 67
<
1 - 8
[out of range]
>
page
|<
<
(28)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4135
"
xml:space
="
preserve
">
<
pb
o
="
28
"
file
="
0167
"
n
="
167
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
uel coni portionis axis à centro grauitatis ita diui
<
lb
/>
ditur, ut pars, quæ terminatur ad uerticem reli-
<
lb
/>
quæ partis, quæ ad baſim, ſit tripla.</
s
>
<
s
xml:id
="
echoid-s4136
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4137
"
xml:space
="
preserve
">Sit pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:id
="
echoid-s4138
"
xml:space
="
preserve
">axis d e; </
s
>
<
s
xml:id
="
echoid-s4139
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4140
"
xml:space
="
preserve
">gra
<
lb
/>
uitatis centrum _K_. </
s
>
<
s
xml:id
="
echoid-s4141
"
xml:space
="
preserve
">Dico lineam d k ipſius _K_ e triplam eſſe.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4142
"
xml:space
="
preserve
">trianguli enim b d c centrum grauitatis ſit punctum f; </
s
>
<
s
xml:id
="
echoid-s4143
"
xml:space
="
preserve
">triã
<
lb
/>
guli a d c centrũ g; </
s
>
<
s
xml:id
="
echoid-s4144
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4145
"
xml:space
="
preserve
">trianguli a d b ſit h: </
s
>
<
s
xml:id
="
echoid-s4146
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4147
"
xml:space
="
preserve
">iungantur a f,
<
lb
/>
b g, c h. </
s
>
<
s
xml:id
="
echoid-s4148
"
xml:space
="
preserve
">Quoniam igitur centrũ grauitatis pyramidis in axe
<
lb
/>
cõſiſtit: </
s
>
<
s
xml:id
="
echoid-s4149
"
xml:space
="
preserve
">ſuntq; </
s
>
<
s
xml:id
="
echoid-s4150
"
xml:space
="
preserve
">d e, a f, b g, c h eiuſdẽ pyramidis axes: </
s
>
<
s
xml:id
="
echoid-s4151
"
xml:space
="
preserve
">conue
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-01
"
xlink:href
="
note-0167-01a
"
xml:space
="
preserve
">17. huíus</
note
>
nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4152
"
xml:space
="
preserve
">Itaque animo concipiamus hanc pyramidem diuiſam in
<
lb
/>
quatuor pyramides, quarum baſes ſint ipſa pyramidis
<
lb
/>
triangula; </
s
>
<
s
xml:id
="
echoid-s4153
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4154
"
xml:space
="
preserve
">axis pun-
<
lb
/>
<
handwritten
xlink:label
="
hd-0167-01
"
xlink:href
="
hd-0167-01a
"
number
="
8
"/>
<
figure
xlink:label
="
fig-0167-01
"
xlink:href
="
fig-0167-01a
"
number
="
123
">
<
image
file
="
0167-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0167-01
"/>
</
figure
>
ctum k quæ quidem py-
<
lb
/>
ramides inter ſe æquales
<
lb
/>
ſunt, ut demõſtrabitur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4155
"
xml:space
="
preserve
">Ducatur enĩ per lineas
<
lb
/>
d c, d e planum ſecãs, ut
<
lb
/>
ſit ipſius, & </
s
>
<
s
xml:id
="
echoid-s4156
"
xml:space
="
preserve
">baſis a b c cõ
<
lb
/>
munis ſectio recta linea
<
lb
/>
c e l: </
s
>
<
s
xml:id
="
echoid-s4157
"
xml:space
="
preserve
">eiuſdẽ uero & </
s
>
<
s
xml:id
="
echoid-s4158
"
xml:space
="
preserve
">triã-
<
lb
/>
guli a d b ſitlinea d h l. </
s
>
<
s
xml:id
="
echoid-s4159
"
xml:space
="
preserve
">
<
lb
/>
erit linea a l æqualis ipſi
<
lb
/>
l b: </
s
>
<
s
xml:id
="
echoid-s4160
"
xml:space
="
preserve
">nam centrum graui-
<
lb
/>
tatis trianguli conſiſtit
<
lb
/>
in linea, quæ ab angulo
<
lb
/>
ad dimidiam baſim per-
<
lb
/>
ducitur, ex tertia deci-
<
lb
/>
ma Archimedis. </
s
>
<
s
xml:id
="
echoid-s4161
"
xml:space
="
preserve
">quare
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-02
"
xlink:href
="
note-0167-02a
"
xml:space
="
preserve
">1. ſexti.</
note
>
triangulum a c l æquale
<
lb
/>
eſt triangulo b c l: </
s
>
<
s
xml:id
="
echoid-s4162
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4163
"
xml:space
="
preserve
">propterea pyramis, cuius baſis trian-
<
lb
/>
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
<
lb
/>
triangulum, & </
s
>
<
s
xml:id
="
echoid-s4164
"
xml:space
="
preserve
">idem uertex. </
s
>
<
s
xml:id
="
echoid-s4165
"
xml:space
="
preserve
">pyramides enim, quæ ab eodẽ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-03
"
xlink:href
="
note-0167-03a
"
xml:space
="
preserve
">5. duode-
<
lb
/>
cimi.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>