Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 36
[Note]
Page: 36
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 39
[Note]
Page: 39
<
1 - 8
[out of range]
>
page
|<
<
(15)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3622
"
xml:space
="
preserve
">
<
pb
o
="
15
"
file
="
0143
"
n
="
143
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
figure
xlink:label
="
fig-0143-01
"
xlink:href
="
fig-0143-01a
"
number
="
97
">
<
image
file
="
0143-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01
"/>
</
figure
>
ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
<
lb
/>
dri portio ad c_y_lindri portionem: </
s
>
<
s
xml:id
="
echoid-s3623
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3624
"
xml:space
="
preserve
">ut p_y_ramis ad p_y_ra-
<
lb
/>
midem, ita priſma ad priſma, cum eadem ſit baſis, & </
s
>
<
s
xml:id
="
echoid-s3625
"
xml:space
="
preserve
">æqua
<
lb
/>
lis altitudo; </
s
>
<
s
xml:id
="
echoid-s3626
"
xml:space
="
preserve
">erit c_y_lindrus uel c_y_lindri portio x priſma-
<
lb
/>
ti _y_ æqualis. </
s
>
<
s
xml:id
="
echoid-s3627
"
xml:space
="
preserve
">eftq; </
s
>
<
s
xml:id
="
echoid-s3628
"
xml:space
="
preserve
">ut ſpacium g h ad ſpacium x, ita c_y_lin-
<
lb
/>
drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
<
lb
/>
tionem x. </
s
>
<
s
xml:id
="
echoid-s3629
"
xml:space
="
preserve
">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
<
lb
/>
c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0143-01
"
xlink:href
="
note-0143-01a
"
xml:space
="
preserve
">7. quinti</
note
>
ſpacio g h deſcripta, eandem proportionem habere, quam
<
lb
/>
ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3630
"
xml:space
="
preserve
">quod demonſtrandum fuerat.</
s
>
<
s
xml:id
="
echoid-s3631
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
head
xml:id
="
echoid-head81
"
xml:space
="
preserve
">THE OREMA IX. PROPOSITIO IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3632
"
xml:space
="
preserve
">Si pyramis ſecetur plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3633
"
xml:space
="
preserve
">ſe-
<
lb
/>
ctio erit figura ſimilis ei, quæ eſt baſis, centrum
<
lb
/>
grauitatis in axe habens.</
s
>
<
s
xml:id
="
echoid-s3634
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>