Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 36
[Note]
Page: 36
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 39
[Note]
Page: 39
<
1 - 8
[out of range]
>
page
|<
<
(11)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div41
"
type
="
section
"
level
="
1
"
n
="
22
">
<
p
>
<
s
xml:id
="
echoid-s624
"
xml:space
="
preserve
">
<
pb
o
="
11
"
file
="
0033
"
n
="
33
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
cundum eam, quæ per g, deorſum ferctur; </
s
>
<
s
xml:id
="
echoid-s625
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s626
"
xml:space
="
preserve
">non ita mane
<
lb
/>
bit ſolidum a p o l: </
s
>
<
s
xml:id
="
echoid-s627
"
xml:space
="
preserve
">nam quod eſt ad a feretur ſurſum; </
s
>
<
s
xml:id
="
echoid-s628
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s629
"
xml:space
="
preserve
">
<
lb
/>
quod ad b deorſum, donec n o ſecundum perpendicu-
<
lb
/>
larem conſtituatur.</
s
>
<
s
xml:id
="
echoid-s630
"
xml:space
="
preserve
">]</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div44
"
type
="
section
"
level
="
1
"
n
="
23
">
<
head
xml:id
="
echoid-head28
"
xml:space
="
preserve
">COMMENTARIVS.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s631
"
xml:space
="
preserve
">
<
emph
style
="
sc
">D_esideratvr_</
emph
>
propoſitionis huius demonstratio, quam nos
<
lb
/>
etiam ad Archimedis figuram appoſite restituimus, commentarijs-
<
lb
/>
que illustrauimus.</
s
>
<
s
xml:id
="
echoid-s632
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s633
"
xml:space
="
preserve
">_Recta portio conoidis rectanguli, quando axem habue_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0033-01
"
xlink:href
="
note-0033-01a
"
xml:space
="
preserve
">A</
note
>
_rit minorem, quàm ſeſquialterum eius, quæ uſque ad axẽ]_
<
lb
/>
In tranſlatione mendoſe legebatur. </
s
>
<
s
xml:id
="
echoid-s634
"
xml:space
="
preserve
">maiorem quàm ſeſquialterum:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s635
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s636
"
xml:space
="
preserve
">ita legebatur in ſequenti propoſitione. </
s
>
<
s
xml:id
="
echoid-s637
"
xml:space
="
preserve
">est autem recta portio co
<
lb
/>
noidis, quæ plano ad axem recto abſcinditur: </
s
>
<
s
xml:id
="
echoid-s638
"
xml:space
="
preserve
">eâmque rectam tunc
<
lb
/>
conſiſtere dicimus, quando planum abſcindens, uidelicet baſis pla-
<
lb
/>
num, ſuperficiei humidi æquidiſtans fuerit.</
s
>
<
s
xml:id
="
echoid-s639
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s640
"
xml:space
="
preserve
">Quæ erit ſectionis i p o s diameter, & </
s
>
<
s
xml:id
="
echoid-s641
"
xml:space
="
preserve
">axis portionis in
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0033-02
"
xlink:href
="
note-0033-02a
"
xml:space
="
preserve
">B</
note
>
humido demerſæ] _ex_ 46 _primi conicorum Apollonij: </
s
>
<
s
xml:id
="
echoid-s642
"
xml:space
="
preserve
">uel ex co-_
<
lb
/>
_rollario_ 51 _eiuſdem_.</
s
>
<
s
xml:id
="
echoid-s643
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s644
"
xml:space
="
preserve
">_Sitque ſolidæ magnitudinis a p o l grauitatis centrum r,_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0033-03
"
xlink:href
="
note-0033-03a
"
xml:space
="
preserve
">C</
note
>
_ipſius uero i p o s centrum ſit b.</
s
>
<
s
xml:id
="
echoid-s645
"
xml:space
="
preserve
">]_ Portionis enim conoidis
<
lb
/>
rectanguli centrum grauitatis eſt in axe, quem ita diuidit, ut pars
<
lb
/>
eius, quæ ad uerticem terminatur, reliquæ partis, quæ ad baſim, ſit
<
lb
/>
dupla: </
s
>
<
s
xml:id
="
echoid-s646
"
xml:space
="
preserve
">quod nos in libro de centro grauitatis ſolidorum propoſitio-
<
lb
/>
ne 29 demonstrauimus. </
s
>
<
s
xml:id
="
echoid-s647
"
xml:space
="
preserve
">Cum igitur portionis a p o l centrum gra-
<
lb
/>
uitatis ſit r, erit o r dupla r n: </
s
>
<
s
xml:id
="
echoid-s648
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s649
"
xml:space
="
preserve
">propterea n o ipſius o r ſeſqui-
<
lb
/>
altera. </
s
>
<
s
xml:id
="
echoid-s650
"
xml:space
="
preserve
">Eadem ratione b centrum grauitatis portionis i p o s est in
<
lb
/>
axe p f, ita ut p b dupla ſit b f.</
s
>
<
s
xml:id
="
echoid-s651
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s652
"
xml:space
="
preserve
">_Etiuncta b r producatur ad g, quod ſit centrum graui_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0033-04
"
xlink:href
="
note-0033-04a
"
xml:space
="
preserve
">D</
note
>
_tatis reliquæ figuræ i s l a]_ Si enim linea b r in g producta, ha
<
lb
/>
beat g r ad r b proportionem eam, quam conoidis portio i p o s ad
<
lb
/>
reliquam figuram, quæ ex humidi ſuperficie extat: </
s
>
<
s
xml:id
="
echoid-s653
"
xml:space
="
preserve
">erit punctum g
<
lb
/>
ipſius grauitatis centrum, ex octaua Archimedis.</
s
>
<
s
xml:id
="
echoid-s654
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>