Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of Notes

< >
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3500" xml:space="preserve">
              <pb file="0138" n="138" rhead="FED. COMMANDINI"/>
            ad priſma a b c e f g. </s>
            <s xml:id="echoid-s3501" xml:space="preserve">quare linea s y ad y t eandem propor-
              <lb/>
            tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
              <lb/>
            </s>
            <s xml:id="echoid-s3502" xml:space="preserve">Sed priſmatis a b c e f g centrum grauitatis eſts: </s>
            <s xml:id="echoid-s3503" xml:space="preserve">& </s>
            <s xml:id="echoid-s3504" xml:space="preserve">priſma-
              <lb/>
            tis a d c e h g centrum t. </s>
            <s xml:id="echoid-s3505" xml:space="preserve">magnitudinis igitur ex his compo
              <lb/>
            ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
              <lb/>
            ctum y; </s>
            <s xml:id="echoid-s3506" xml:space="preserve">medium ſcilicet axis u x, qui oppoſitorum plano-
              <lb/>
            rum centra coniungit.</s>
            <s xml:id="echoid-s3507" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3508" xml:space="preserve">Rurſus ſit priſma baſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:id="echoid-s3509" xml:space="preserve">& </s>
            <s xml:id="echoid-s3510" xml:space="preserve">quod ei opponitur ſit f g h _K_ l: </s>
            <s xml:id="echoid-s3511" xml:space="preserve">ſec enturq; </s>
            <s xml:id="echoid-s3512" xml:space="preserve">a f, b g, c h,
              <lb/>
            d _k_, el bifariam: </s>
            <s xml:id="echoid-s3513" xml:space="preserve">& </s>
            <s xml:id="echoid-s3514" xml:space="preserve">per diuiſiones ducto plano, ſectio ſit pẽ
              <lb/>
            tagonũ m n o p q. </s>
            <s xml:id="echoid-s3515" xml:space="preserve">deinde iuncta e b per lineas le, e b aliud
              <lb/>
            planum ducatur, diuidẽs priſ
              <lb/>
              <figure xlink:label="fig-0138-01" xlink:href="fig-0138-01a" number="93">
                <image file="0138-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01"/>
              </figure>
            ma a k in duo priſmata, in priſ
              <lb/>
            ma ſcilicet al, cuius plana op-
              <lb/>
            poſita ſint triangula a b e f g l:
              <lb/>
            </s>
            <s xml:id="echoid-s3516" xml:space="preserve">& </s>
            <s xml:id="echoid-s3517" xml:space="preserve">in prima b _k_ cuius plana op
              <lb/>
            poſita ſint quadrilatera b c d e
              <lb/>
            g h _k_ l. </s>
            <s xml:id="echoid-s3518" xml:space="preserve">Sint autem triangulo-
              <lb/>
            rum a b e, f g l centra grauita
              <lb/>
            tis puncta r ſ: </s>
            <s xml:id="echoid-s3519" xml:space="preserve">& </s>
            <s xml:id="echoid-s3520" xml:space="preserve">b c d e, g h _k_ l
              <lb/>
            quadrilaterorum centra tu: </s>
            <s xml:id="echoid-s3521" xml:space="preserve">
              <lb/>
            iunganturq; </s>
            <s xml:id="echoid-s3522" xml:space="preserve">r s, t u o ccurren-
              <lb/>
            tes plano m n o p q in punctis
              <lb/>
            x y. </s>
            <s xml:id="echoid-s3523" xml:space="preserve">& </s>
            <s xml:id="echoid-s3524" xml:space="preserve">itidem iungãtur r t, ſu,
              <lb/>
            x y. </s>
            <s xml:id="echoid-s3525" xml:space="preserve">erit in linea r t cẽtrum gra
              <lb/>
            uitatis pentagoni a b c d e; </s>
            <s xml:id="echoid-s3526" xml:space="preserve">
              <lb/>
            quod ſit z: </s>
            <s xml:id="echoid-s3527" xml:space="preserve">& </s>
            <s xml:id="echoid-s3528" xml:space="preserve">in linea ſu cen-
              <lb/>
            trum pentagoni f g h k l: </s>
            <s xml:id="echoid-s3529" xml:space="preserve">ſit au
              <lb/>
            tem χ: </s>
            <s xml:id="echoid-s3530" xml:space="preserve">& </s>
            <s xml:id="echoid-s3531" xml:space="preserve">ducatur z χ, quæ di-
              <lb/>
            cto plano in χ occurrat. </s>
            <s xml:id="echoid-s3532" xml:space="preserve">Itaq; </s>
            <s xml:id="echoid-s3533" xml:space="preserve">
              <lb/>
            punctum x eſt centrum graui
              <lb/>
            tatis trianguli m n q, ac priſ-
              <lb/>
            matis al: </s>
            <s xml:id="echoid-s3534" xml:space="preserve">& </s>
            <s xml:id="echoid-s3535" xml:space="preserve">y grauitatis centrum quadrilateri n o p q, ac
              <lb/>
            priſmatis b k. </s>
            <s xml:id="echoid-s3536" xml:space="preserve">quare y centrum erit pentagoni m n o p q. </s>
            <s xml:id="echoid-s3537" xml:space="preserve">&</s>
            <s xml:id="echoid-s3538" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>