Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
< >
page |< < of 213 > >|
190FED. COMMANDINI ctiones circuli ex prima propofitione ſphæricorum Theo
doſii
:
unus quidem circa triangulum a b c deſcriptus: al-
ter
uero circa d e f:
& quoniam triangula a b c, d e f æqua-
lia
ſunt, &
ſimilia; erunt ex prima, & ſecunda propoſitione
duodecimi
libri elementorum, circuli quoque inter ſe ſe
æquales
.
poſtremo a centro g ad circulum a b c perpendi
cularis
ducatur g h;
& alia perpendicularis ducatur ad cir
culum
d e f, quæ ſit g _k_;
& iungantur a h, d k. perſpicuum
eſt
ex corollario primæ ſphæricorum Theodoſii, punctum
h
centrum eſſe circuli a b c, &
k centrum circuli d e f. Quo
niam
igitur triangulorum g a h, g d K latus a g eſt æquale la
teri
g d;
ſunt enim à centro ſphæræ ad ſuperficiem: atque
eſt
a h æquale d k:
& ex ſexta propoſitione libri primi ſphæ
ricorum
Theodoſii g h ipſi g K:
triangulum g a h æquale
erit
, &
ſimile g d k triangulo: & angulus a g h æqualis an-
gulo
d g _K_.
ſed anguli a g h, h g d ſunt æquales duobus re-
1113. primi ctis.
ergo & ipſi h g d, d g k duobus rectis æquales erunt.
& idcirco h g, g _K_ una, atque eadem erit linea. cum autem
2214. primi h ſit centrũ circuli, &
tri-
141[Figure 141] anguli a b c grauitatis cen
trũ
probabitur ex iis, quæ
in
prima propoſitione hu
ius
tradita funt.
quare g h
erit
pyramidis a b c g axis.
& ob eandem cauſſam g k
axis
pyramidis d e f g.
Ita-
que
centrum grauitatis py
ramidis
a b c g ſit púctum
l
, &
pyramidis d e f g ſit m.
Similiter
ut ſupra demon-
ſtrabimus
m g, g linter ſe æquales eſſe, &
punctum g graui
tatis
centrum magnitudinis, quæ ex utriſque pyramidibus
conſtat
.
eodem modo demonſtrabitur, quarumcunque
duarum
pyramidum, quæ opponuntur, grauitatis

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index