Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
[31. LEMMAI.]
[32. LEMMA II.]
[33. LEMMA III.]
[34. LEMMA IIII.]
[35. PROPOSITIO VII.]
[36. PROPOSITIO VIII.]
[37. COMMENTARIVS.]
[38. PROPOSITIO IX.]
[39. COMMENTARIVS.]
[40. PROPOSITIO X.]
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
< >
page |< < (25) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
itêmq; quadratum c q æquale rectangulo q u y, hoc eſt ſectionum
h s c, m u c lineas s x, u y, eas eſſe, iuxta quas poſſunt, quæ à ſectio-
& ergo & & & Quòd cum quadratú c p æqua
le ſit rectangulo p s x &
quadratum c q rectangulo q u y, erunt
tres lineæ ſ p, p c, ſ x proportionales;
itemq; & &

LEMMA IIII.

&
Q_voniam_ enim ut a e ad e b, ita c f ad f d, erit componen
do ut a b ad e b, ita c d ad f d.
componendo, conuertendoq; ergo ex æquali, conuertendoq;