17532DE CENTRO GRAVIT. SOLID.
SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
cuius maior baſis a b, minor c d. & ſecetur altero plano
baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
baſes a b, c d. conſtituatur autẽ pyramis, uel conus, uel co-
ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
ſti, & altitudo æqualis. Di-
129[Figure 129] co fruſtum a d ad pyrami-
dem, uel conum, uel coni
portionem a g b eandem
proportionẽ habere, quã
utræque baſes, a b, c d unà
cum e f ad baſim a b. eſt
enim fruſtum a d æquale
pyramidi, uel cono, uel co-
ni portioni, cuius baſis ex
tribus baſibus a b, e f, c d
conſtat; & altitudo ipſius
altitudini eſt æqualis: quod mox oſtendemus. Sed pyrami
des, coni, uel coni portiões,
130[Figure 130] quæ ſunt æquali altitudine,
eãdem inter ſe, quam baſes,
proportionem habent, ſicu-
ti demonſtratum eſt, partim
ab Euclide in duodecimo li-
116. 11. duo
decimi bro elementorum, partim à
nobis in cõmentariis in un-
decimam propoſitionẽ Ar-
chimedis de conoidibus, &
ſphæroidibus. quare pyra-
mis, uel conus, uel coni por-
tio, cuius baſis eſt tribus illis
baſibus æqualis ad a g b eam
habet proportionem, quam
baſes a b, e f, c d ad ab bafim. Fruſtum igitur a d ad a g
cuius maior baſis a b, minor c d. & ſecetur altero plano
baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
baſes a b, c d. conſtituatur autẽ pyramis, uel conus, uel co-
ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
ſti, & altitudo æqualis. Di-
129[Figure 129] co fruſtum a d ad pyrami-
dem, uel conum, uel coni
portionem a g b eandem
proportionẽ habere, quã
utræque baſes, a b, c d unà
cum e f ad baſim a b. eſt
enim fruſtum a d æquale
pyramidi, uel cono, uel co-
ni portioni, cuius baſis ex
tribus baſibus a b, e f, c d
conſtat; & altitudo ipſius
altitudini eſt æqualis: quod mox oſtendemus. Sed pyrami
des, coni, uel coni portiões,
130[Figure 130] quæ ſunt æquali altitudine,
eãdem inter ſe, quam baſes,
proportionem habent, ſicu-
ti demonſtratum eſt, partim
ab Euclide in duodecimo li-
116. 11. duo
decimi bro elementorum, partim à
nobis in cõmentariis in un-
decimam propoſitionẽ Ar-
chimedis de conoidibus, &
ſphæroidibus. quare pyra-
mis, uel conus, uel coni por-
tio, cuius baſis eſt tribus illis
baſibus æqualis ad a g b eam
habet proportionem, quam
baſes a b, e f, c d ad ab bafim. Fruſtum igitur a d ad a g