Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
< >
page |< < of 213 > >|
132FED. COMMANDINI centrum z: parallelogram mi a d, θ: parallelogrammi f g, φ:
parallelogrammi d h, χ: &
88[Figure 88] parallelogrammi c g centrũ
ψ:
atque erit ω punctum me
dium uniuſcuiuſque axis, ui
delicet eius lineæ, quæ oppo
ſitorum planorũ centra con
iungit.
Dico ω centrum effe
grauitatis ipſius ſolidi.
eſt
enim, ut demonſtrauimus,
116. huius ſolidi a f centrum grauitatis
in plano K n;
quod oppoſi-
tis planis a d, g f æ quidiſtans
reliquorum planorum late-
ra biſariam diuidit:
& fimili
rationeidem centrum eſt in plano o r, æ quidiſtante planis
a e, b f oppo ſitis.
ergo in communi ipſorum fectione: ui-
delicet in linea y z.
Sed eſt etiam in plano t u, quod quidẽ
y z ſecat in ω.
Conſtat igitur centrum grauitatis ſolidi eſſe
punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
planorum oppoſitorum centra coniungunt.
Sit aliud prima a f; & in eo plana, quæ opponuntur, tri-
angula a b c, d e f:
diuiſisq; bifariam parallelogrammorum
lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
triangulum g h k æ quale, &
ſimile ipſis a b c, d e f. Rurſus
diuidatur a b bifariam in l:
& iuncta c l per ipſam, & per
c _K_ f planum ducatur priſma ſecans, cuius, &
parallelogrã
mi a e communis ſcctio ſit l m n.
diuidet pun ctum m li-
neam g h bifariam;
& ita n diuidet lineam d e: quoniam
triangula a c l, g k m, d f n æ qualia ſunt, &
ſimilia, ut ſu pra
225. huius demonſtrauimus.
Iam ex iis, quæ tradita ſunt, conſtat cen
trum greuitatis priſmatis in plano g h k contineri.
Dico
ipſum eſſe in linea k m.
Si enim fieri poteſt, ſit o centrum;

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index