Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
< >
page |< < of 213 > >|
180FED. COMMANDINI fruſtum a d. Sed pyramis q æqualis eſt fruſto à pyramide
abſciſſo, ut dem onſtrauimus.
ergo & conus, uel coni por-
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
conſtat, &
altitudo eadem, quæ fruſti: ipſi fruſto a d eſt æ-
qualis.
atque illud eſt, quod demonſtrare oportebat.
THEOREMA XXI. PROPOSITIO XXVI.
Cvivslibet fruſti à pyramide, uel cono,
uel coni portione abſcisſi, centrum grauitatis eſt
in axe, ita ut eo primum in duas portiones diui-
ſo, portio ſuperior, quæ minorem baſim attingit
ad portionem reliquam eam habeat proportio-
nem, quam duplum lateris, uel diametri maioris
baſis, vnà cum latere, uel diametro minoris, ipſi
reſpondente, habet ad duplum lateris, uel diame-
tri minoris baſis vnà cũ latere, uel diametro ma-
ioris:
deinde à puncto diuiſionis quarta parte ſu
perioris portionis in ipſa ſumpta:
& rurſus ab in-
ferioris portionis termino, qui eſt ad baſim maio
rem, ſumpta quarta parte totius axis:
centrum ſit
in linea, quæ his finibus continetur, atque in eo li
neæ puncto, quo ſic diuiditur, ut tota linea ad par
tem propinquiorem minori baſi, eãdem propor-
tionem habeat, quam fruſtum ad pyramidẽ, uel
conum, uel coni portionem, cuius baſis ſit ea-
dem, quæ baſis maior, &
altitudo fruſti altitudini
æqualis.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index