Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < (46) of 213 > >|
DE CENTRO GRAVIT. SOLID.
ro ita demonſtrabitur. Ducatur à puncto b ad planum ba-
ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
erit b h altitudo coni, uel coni portionis a b c: & b K altitu
16. unde-
cimi.
do e f g.
Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
enim planorum æ quidiſtantium ſectiones:
habebit d b ad
4 ſexti.b g proportionem ean dem, quam h b ad b k.
quare por-
tio conoidis a b c ad portionem e f g proportionem habet
compoſitam ex proportione baſis a c ad baſim e f;
& ex
proportione d b axis ad axem b g.
Sed circulus, uel
2. duode
cimi
ellipſis circa diametrum a c ad circulum, uel ellipſim
7. de co-
noidibus
& ſphæ-
roidibus
circa e f, eſt ut quadratum a c ad quadratum e f;
hoc eſt ut
quadratũ a d ad quadratũ e g.
& quadratum a d ad quadra
tum e g eſt, ut linea d b ad lineam b g.
circulus igitur, uel el
lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
15. quintihoc eſt baſis ad baſim eandem proportionem habet, quã
20. primi
conicorũ
d b axis ad axem b g.
ex quibus ſequitur portionem a b c
ad portionem e b f habere proportionem duplam eius,
quæ eſt baſis a c ad bafim e f:
uel axis d b ad b g axem. quod
demonſtrandum proponebatur.

THEOREMA XXV. PROPOSITIO XXXI.

Cuiuslibet fruſti à portione rectanguli conoi
dis abſcisſi, centrum grauitatis eſt in axe, ita ut
demptis primum à quadrato, quod fit ex diame-
tro maioris baſis, tertia ipſius parte, &
duabus
tertiis quadrati, quod fit ex diametro baſis mino-
ris:
deinde à tertia parte quadrati maioris baſis
rurſus dempta portione, ad quam reliquum qua
drati baſis maioris unà cum dicta portione duplã
proportionem habeat eius, quæ eſt quadrati ma-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index