Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < (2) of 213 > >|
1152DE CENTRO GRAVIT. SOLID. tur, centrum grauitatis eſt idem, quod circuli cen
trum.
Sit primo triangulum æquilaterum a b c in circulo de-
ſcriptum:
& diuiſa a c bifariam in d, ducatur b d. erit in li-
nea b d centrum grauitatis triãguli a b c, ex tertia decima
primi libri Archimedis de centro grauitatis planorum.
Et
quoniam linea a b eſt æqualis
lineæ b c;
& a d ipſi d c; eſtq́;
b d utrique communis: trian-
gulum a b d æquale erit trian
118. primi. gulo c b d:
& anguli angulis æ-
quales, qui æqualibus lateri-
bus ſubtenduntur.
ergo angu
2213. primi. li ad d utriq;
recti ſunt. quòd
cum linea b d ſecet a c biſa-
riam, &
ad angulos rectos; in
33corol. p@@
mæ tertii
ipſa b d eſt centrum circuli.
quare in eadem b d linea erit
centrum grauitatis trianguli, &
circuli centrum. Similiter
diuiſa a b bifariam in e, &
ducta c e, oſtendetur in ipſa utrũ
que centrum contineri.
ergo ea erunt in puncto, in quo li-
neæ b d, c e conueniunt.
trianguli igitur a b c centrum gra
uitatis eſt idem, quod circuli centrum.
Sit quadratum a b c d in cir-
culo deſcriptum:
& ducantur
a c, b d, quæ conueniant in e.
er-
go punctum e eſt centrum gra
uitatis quadrati, ex decima eiuſ
dem libri Archimedis.
Sed cum
omnes anguli ad a b c d recti
ſint;
erit a b c femicirculus:
4451. tortil. itemq́; b c d: & propterea li-
neæ a c, b d diametri circuli: