Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < of 213 > >|
FED. COMMANDINI
tionem cadet: Itaque cum à portione conoidis, cuius gra-
uitatis centrum e auferatur inſcripta figura, centrum ha-
bens p:
& ſit l e ad e p, ut figura inſcripta ad portiones reli
quas:
erit magnitudinis, quæ ex reliquis portionibus con
ſtat, centrum grauitatis punctum l, extra portionem ca-
dens.
quod fieri nequit. ergo linea p e minor eſt ip ſa g li-
nea propoſita.
Ex quibus perſpicuum eſt centrum grauitatis
figuræ inſcriptæ, &
circumſcriptæ eo magis acce
dere ad portionis centrum, quo pluribus cylin-
dris, uel cylindri portionibus conſtet:
fiatq́ figu
ra inſcripta maior, &
circumſcripta minor. &
quanquam continenter ad portionis centrū pro-
ueniet.
ſequeretur enim figuram inſcriptam, nó
ſolum portioni, ſed etiam circumſcriptæ figuræ
æqualem eſſe.
quod eſt abſurdum.

THE OREMA XXIII. PROPOSITIO XXIX.

Cvivslibet portionis conoidis rectangu-
li axis à cẽtro grauitatis ita diuiditur, ut pars quæ