Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[1. None]
[2. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBRI DVO. A FEDERICO COMMANDINO VRBINATE IN PRISTINVM NITOREM RESTITVTI, ET COMMENTARIIS ILLVSTRATI.]
[3. CVM PRIVILEGIO IN ANNOS X. BONONIAE,]
[4. M D LXV.]
[5. RANVTIO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[6. Federicus Commandinus.]
[7. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER PRIMVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. POSITIO.]
[8. PROPOSITIO I.]
[9. PROPOSITIO II.]
[10. PROPOSITIO III.]
[11. PROPOSITIO IIII.]
[12. PROPOSITIO V.]
[13. PROPOSITIO VI.]
[14. PROPOSITIO VII.]
[15. POSITIO II.]
[16. COMMENTARIVS.]
[17. PROPOSITIO VIII.]
[18. COMMENTARIVS.]
[19. PROPOSITIO IX.]
[20. COMMENTARIVS.]
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
< >
page |< < (28) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb o="28" file="0167" n="167" rhead="DE CENTRO GRAVIT. SOLID."/>
            uel coni portionis axis à centro grauitatis ita diui
              <lb/>
            ditur, ut pars, quæ terminatur ad uerticem reli-
              <lb/>
            quæ partis, quæ ad baſim, ſit tripla.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit pyramis, cuius baſis triangulum a b c; </s>
            <s xml:space="preserve">axis d e; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">gra
              <lb/>
            uitatis centrum _K_. </s>
            <s xml:space="preserve">Dico lineam d k ipſius _K_ e triplam eſſe.
              <lb/>
            </s>
            <s xml:space="preserve">trianguli enim b d c centrum grauitatis ſit punctum f; </s>
            <s xml:space="preserve">triã
              <lb/>
            guli a d c centrũ g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli a d b ſit h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a f,
              <lb/>
            b g, c h. </s>
            <s xml:space="preserve">Quoniam igitur centrũ grauitatis pyramidis in axe
              <lb/>
            cõſiſtit: </s>
            <s xml:space="preserve">ſuntq; </s>
            <s xml:space="preserve">d e, a f, b g, c h eiuſdẽ pyramidis axes: </s>
            <s xml:space="preserve">conue
              <lb/>
              <anchor type="note" xlink:label="note-0167-01a" xlink:href="note-0167-01"/>
            nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque animo concipiamus hanc pyramidem diuiſam in
              <lb/>
            quatuor pyramides, quarum baſes ſint ipſa pyramidis
              <lb/>
            triangula; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis pun-
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0167-01a" xlink:href="hd-0167-01"/>
              <anchor type="figure" xlink:label="fig-0167-01a" xlink:href="fig-0167-01"/>
            ctum k quæ quidem py-
              <lb/>
            ramides inter ſe æquales
              <lb/>
            ſunt, ut demõſtrabitur.
              <lb/>
            </s>
            <s xml:space="preserve">Ducatur enĩ per lineas
              <lb/>
            d c, d e planum ſecãs, ut
              <lb/>
            ſit ipſius, & </s>
            <s xml:space="preserve">baſis a b c cõ
              <lb/>
            munis ſectio recta linea
              <lb/>
            c e l: </s>
            <s xml:space="preserve">eiuſdẽ uero & </s>
            <s xml:space="preserve">triã-
              <lb/>
            guli a d b ſitlinea d h l. </s>
            <s xml:space="preserve">
              <lb/>
            erit linea a l æqualis ipſi
              <lb/>
            l b: </s>
            <s xml:space="preserve">nam centrum graui-
              <lb/>
            tatis trianguli conſiſtit
              <lb/>
            in linea, quæ ab angulo
              <lb/>
            ad dimidiam baſim per-
              <lb/>
            ducitur, ex tertia deci-
              <lb/>
            ma Archimedis. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0167-02a" xlink:href="note-0167-02"/>
            triangulum a c l æquale
              <lb/>
            eſt triangulo b c l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea pyramis, cuius baſis trian-
              <lb/>
            gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
              <lb/>
            triangulum, & </s>
            <s xml:space="preserve">idem uertex. </s>
            <s xml:space="preserve">pyramides enim, quæ ab eodẽ
              <lb/>
              <anchor type="note" xlink:label="note-0167-03a" xlink:href="note-0167-03"/>
            </s>
          </p>
        </div>
      </text>
    </echo>