Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0180
"
n
="
180
"
rhead
="
FED. COMMANDINI
"/>
fruſtum a d. </
s
>
<
s
xml:space
="
preserve
">Sed pyramis q æqualis eſt fruſto à pyramide
<
lb
/>
abſciſſo, ut dem onſtrauimus. </
s
>
<
s
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:space
="
preserve
">conus, uel coni por-
<
lb
/>
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
<
lb
/>
conſtat, & </
s
>
<
s
xml:space
="
preserve
">altitudo eadem, quæ fruſti: </
s
>
<
s
xml:space
="
preserve
">ipſi fruſto a d eſt æ-
<
lb
/>
qualis. </
s
>
<
s
xml:space
="
preserve
">atque illud eſt, quod demonſtrare oportebat.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
4
">
<
note
position
="
left
"
xlink:label
="
note-0178-01
"
xlink:href
="
note-0178-01a
"
xml:space
="
preserve
">9. huius</
note
>
<
note
position
="
left
"
xlink:label
="
note-0178-02
"
xlink:href
="
note-0178-02a
"
xml:space
="
preserve
">2. duode-
<
lb
/>
cimi.</
note
>
<
figure
xlink:label
="
fig-0178-01
"
xlink:href
="
fig-0178-01a
">
<
image
file
="
0178-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0178-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0178-03
"
xlink:href
="
note-0178-03a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
<
note
position
="
right
"
xlink:label
="
note-0179-01
"
xlink:href
="
note-0179-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
91
">
<
head
xml:space
="
preserve
">THEOREMA XXI. PROPOSITIO XXVI.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Cvivslibet</
emph
>
fruſti à pyramide, uel cono,
<
lb
/>
uel coni portione abſcisſi, centrum grauitatis eſt
<
lb
/>
in axe, ita ut eo primum in duas portiones diui-
<
lb
/>
ſo, portio ſuperior, quæ minorem baſim attingit
<
lb
/>
ad portionem reliquam eam habeat proportio-
<
lb
/>
nem, quam duplum lateris, uel diametri maioris
<
lb
/>
baſis, vnà cum latere, uel diametro minoris, ipſi
<
lb
/>
reſpondente, habet ad duplum lateris, uel diame-
<
lb
/>
tri minoris baſis vnà cũ latere, uel diametro ma-
<
lb
/>
ioris: </
s
>
<
s
xml:space
="
preserve
">deinde à puncto diuiſionis quarta parte ſu
<
lb
/>
perioris portionis in ipſa ſumpta: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">rurſus ab in-
<
lb
/>
ferioris portionis termino, qui eſt ad baſim maio
<
lb
/>
rem, ſumpta quarta parte totius axis: </
s
>
<
s
xml:space
="
preserve
">centrum ſit
<
lb
/>
in linea, quæ his finibus continetur, atque in eo li
<
lb
/>
neæ puncto, quo ſic diuiditur, ut tota linea ad par
<
lb
/>
tem propinquiorem minori baſi, eãdem propor-
<
lb
/>
tionem habeat, quam fruſtum ad pyramidẽ, uel
<
lb
/>
conum, uel coni portionem, cuius baſis ſit ea-
<
lb
/>
dem, quæ baſis maior, & </
s
>
<
s
xml:space
="
preserve
">altitudo fruſti altitudini
<
lb
/>
æqualis.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>