Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div238
"
type
="
section
"
level
="
1
"
n
="
82
">
<
p
>
<
s
xml:id
="
echoid-s3895
"
xml:space
="
preserve
">
<
pb
file
="
0156
"
n
="
156
"
rhead
="
FED. COMMANDINI
"/>
mus: </
s
>
<
s
xml:id
="
echoid-s3896
"
xml:space
="
preserve
">erit utique grauitatis centrum pyramidis punctum
<
lb
/>
g: </
s
>
<
s
xml:id
="
echoid-s3897
"
xml:space
="
preserve
">in quo ſcilicet ipſi axes conueniunt.</
s
>
<
s
xml:id
="
echoid-s3898
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div240
"
type
="
section
"
level
="
1
"
n
="
83
">
<
head
xml:id
="
echoid-head90
"
xml:space
="
preserve
">THEOREMA XIIII. PROPOSITIO XVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3899
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Si</
emph
>
ſolidum parallelepipedum ſecetur plano
<
lb
/>
baſibus æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3900
"
xml:space
="
preserve
">erit ſolidum ad ſolidum,
<
lb
/>
ſicut altitudo ad altitudinem, uel ſicut axisad
<
lb
/>
axem.</
s
>
<
s
xml:id
="
echoid-s3901
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3902
"
xml:space
="
preserve
">Sit ſolidum parallelepipe
<
lb
/>
<
figure
xlink:label
="
fig-0156-01
"
xlink:href
="
fig-0156-01a
"
number
="
110
">
<
image
file
="
0156-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0156-01
"/>
</
figure
>
dum a b c d e f g h, cuius axis
<
lb
/>
k 1: </
s
>
<
s
xml:id
="
echoid-s3903
"
xml:space
="
preserve
">ſeceturq; </
s
>
<
s
xml:id
="
echoid-s3904
"
xml:space
="
preserve
">plano baſibus
<
lb
/>
æquidiſtante, quod faciat
<
lb
/>
fectionem m n o p; </
s
>
<
s
xml:id
="
echoid-s3905
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3906
"
xml:space
="
preserve
">axi in
<
lb
/>
puncto q occurrat. </
s
>
<
s
xml:id
="
echoid-s3907
"
xml:space
="
preserve
">Dico
<
lb
/>
ſolidum g m ad ſolidum m c
<
lb
/>
eam proportionem habere,
<
lb
/>
quam altitudo ſolidi g m ha-
<
lb
/>
betad ſolidi m c altitudi-
<
lb
/>
nem; </
s
>
<
s
xml:id
="
echoid-s3908
"
xml:space
="
preserve
">uel quam axis k q ad
<
lb
/>
axem q l. </
s
>
<
s
xml:id
="
echoid-s3909
"
xml:space
="
preserve
">Sienim axis K l ad
<
lb
/>
baſis planum ſit perpendicu
<
lb
/>
laris, & </
s
>
<
s
xml:id
="
echoid-s3910
"
xml:space
="
preserve
">linea g c, quæ ex quin
<
lb
/>
ta huius ipſi k l æquidiſtat,
<
lb
/>
perpendicularis erit ad idẽ
<
lb
/>
planum, & </
s
>
<
s
xml:id
="
echoid-s3911
"
xml:space
="
preserve
">ſolidi altitudi-
<
lb
/>
nem dimetietur. </
s
>
<
s
xml:id
="
echoid-s3912
"
xml:space
="
preserve
">Itaqueſo-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0156-01
"
xlink:href
="
note-0156-01a
"
xml:space
="
preserve
">2. undeci
<
lb
/>
mi.</
note
>
lidum g m ad ſolidum m c
<
lb
/>
eam proportionem habet,
<
lb
/>
quam parallelogrammũ g n
<
lb
/>
ad parallelogrammum n c,
<
lb
/>
hoc eſt quam linea g o, quæ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0156-02
"
xlink:href
="
note-0156-02a
"
xml:space
="
preserve
">i. ſexti.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>