Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
< >
page |< < (22) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div235" type="section" level="1" n="81">
          <pb o="22" file="0155" n="155" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:id="echoid-s3876" xml:space="preserve">Ex demonſtratis perſpicue apparet, portioni
              <lb/>
            ſphæræ uel ſphæroidis, quæ dimidia maior eſt, cẽ
              <lb/>
            trum grauitatis in axe conſiſtere.</s>
            <s xml:id="echoid-s3877" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3878" xml:space="preserve">Data enim
              <lb/>
              <figure xlink:label="fig-0155-01" xlink:href="fig-0155-01a" number="108">
                <image file="0155-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0155-01"/>
              </figure>
            qualibet maio
              <lb/>
            ri portiõe, quo
              <lb/>
            niã totius ſphæ
              <lb/>
            ræ, uel ſphæroi
              <lb/>
            dis grauitatis
              <lb/>
            centrum eſt in
              <lb/>
            axe; </s>
            <s xml:id="echoid-s3879" xml:space="preserve">eſt autem
              <lb/>
            & </s>
            <s xml:id="echoid-s3880" xml:space="preserve">in axe cen-
              <lb/>
            trum portio-
              <lb/>
            nis minoris:
              <lb/>
            </s>
            <s xml:id="echoid-s3881" xml:space="preserve">reliquæ portionis uidelicet maioris centrum in axe neceſ-
              <lb/>
            ſario conſiſtet.</s>
            <s xml:id="echoid-s3882" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div238" type="section" level="1" n="82">
          <head xml:id="echoid-head89" xml:space="preserve">THE OREMA XIII. PROPOSITIO XVII.</head>
          <p>
            <s xml:id="echoid-s3883" xml:space="preserve">Cuiuslibet pyramidis triã
              <lb/>
              <figure xlink:label="fig-0155-02" xlink:href="fig-0155-02a" number="109">
                <image file="0155-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0155-02"/>
              </figure>
            gularem baſim habẽtis gra
              <lb/>
            uitatis centrum eſt in pun-
              <lb/>
            cto, in quo ipſius axes con-
              <lb/>
            ueniunt.</s>
            <s xml:id="echoid-s3884" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3885" xml:space="preserve">Sit pyramis, cuius baſis trian
              <lb/>
            gulum a b c, axis d e: </s>
            <s xml:id="echoid-s3886" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s3887" xml:space="preserve">trian
              <lb/>
            guli b d c grauitatis centrum f:
              <lb/>
            </s>
            <s xml:id="echoid-s3888" xml:space="preserve">& </s>
            <s xml:id="echoid-s3889" xml:space="preserve">iungatur a f. </s>
            <s xml:id="echoid-s3890" xml:space="preserve">erit & </s>
            <s xml:id="echoid-s3891" xml:space="preserve">a faxis eiuſ
              <lb/>
            dem pyramidis ex tertia diffini-
              <lb/>
            tione huius. </s>
            <s xml:id="echoid-s3892" xml:space="preserve">Itaque quoniam centrum grauitatis eſt in
              <lb/>
            axe d e; </s>
            <s xml:id="echoid-s3893" xml:space="preserve">eſt autem & </s>
            <s xml:id="echoid-s3894" xml:space="preserve">in axe a f; </s>
            <s xml:id="echoid-s3895" xml:space="preserve">quod proxime </s>
          </p>
        </div>
      </text>
    </echo>