Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[21.] ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.
[22.] PROPOSITIO II.
[23.] COMMENTARIVS.
[24.] PROPOSITIO III.
[25.] PROPOSITIO IIII.
[26.] COMMENTARIVS.
[27.] PROPOSITIO V.
[28.] COMMENTARIVS.
[29.] PROPOSITIO VI.
[30.] COMMENTARIVS.
[31.] LEMMAI.
[32.] LEMMA II.
[33.] LEMMA III.
[34.] LEMMA IIII.
[35.] PROPOSITIO VII.
[36.] PROPOSITIO VIII.
[37.] COMMENTARIVS.
[38.] PROPOSITIO IX.
[39.] COMMENTARIVS.
[40.] PROPOSITIO X.
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
< >
page |< < (10) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div214" type="section" level="1" n="72">
          <pb o="10" file="0131" n="131" rhead="DE CENTRO GRA VIT. SOLID."/>
          <figure number="87">
            <image file="0131-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0131-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <head xml:id="echoid-head80" xml:space="preserve">THE OREMA VIII. PROPOSITIO VIII.</head>
          <p>
            <s xml:id="echoid-s3336" xml:space="preserve">Cuiuslibet priſmatis, & </s>
            <s xml:id="echoid-s3337" xml:space="preserve">cuiuslibet cylindri, uel
              <lb/>
            cylindri portionis grauitatis centrum in medio
              <lb/>
            ipſius axis conſiſtit.</s>
            <s xml:id="echoid-s3338" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3339" xml:space="preserve">Sit primum a f priſma æ quidiſtantibus planis contentũ,
              <lb/>
            quod ſolidum parallelepipedum appellatur: </s>
            <s xml:id="echoid-s3340" xml:space="preserve">& </s>
            <s xml:id="echoid-s3341" xml:space="preserve">oppoſito-
              <lb/>
            rum planorum c f, a h, d a, f g latera bifariam diuidantur in
              <lb/>
            punctis k l m n o p q r s t u x: </s>
            <s xml:id="echoid-s3342" xml:space="preserve">& </s>
            <s xml:id="echoid-s3343" xml:space="preserve">per diuiſiones ducantur
              <lb/>
            plana κ n, o r, s x. </s>
            <s xml:id="echoid-s3344" xml:space="preserve">communes autem eorum planorum ſe-
              <lb/>
            ctiones ſint lineæ y z, θ φ, χ ψ: </s>
            <s xml:id="echoid-s3345" xml:space="preserve">quæ in puncto ω conueniãt.
              <lb/>
            </s>
            <s xml:id="echoid-s3346" xml:space="preserve">erit ex decima eiuſdem libri Archimedis parallelogrammi
              <lb/>
            c f centrum grauitatis punctum y; </s>
            <s xml:id="echoid-s3347" xml:space="preserve">parallelogrammi a </s>
          </p>
        </div>
      </text>
    </echo>