Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[31.] LEMMAI.
[32.] LEMMA II.
[33.] LEMMA III.
[34.] LEMMA IIII.
[35.] PROPOSITIO VII.
[36.] PROPOSITIO VIII.
[37.] COMMENTARIVS.
[38.] PROPOSITIO IX.
[39.] COMMENTARIVS.
[40.] PROPOSITIO X.
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div182" type="section" level="1" n="56">
          <p>
            <s xml:id="echoid-s2582" xml:space="preserve">
              <pb file="0098" n="98" rhead="ARCHIMEDIS"/>
            ſuperficiem recto, ſit portionis ſectio anzg; </s>
            <s xml:id="echoid-s2583" xml:space="preserve">ſuperficiei
              <lb/>
            humidi ez: </s>
            <s xml:id="echoid-s2584" xml:space="preserve">a-
              <lb/>
              <figure xlink:label="fig-0098-01" xlink:href="fig-0098-01a" number="64">
                <image file="0098-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0098-01"/>
              </figure>
            xis portionis,
              <lb/>
            & </s>
            <s xml:id="echoid-s2585" xml:space="preserve">ſectionis dia-
              <lb/>
            meter b d: </s>
            <s xml:id="echoid-s2586" xml:space="preserve">ſece-
              <lb/>
            turq, b d in pũ-
              <lb/>
            ctis _K_r, ſicuti
              <lb/>
            prius; </s>
            <s xml:id="echoid-s2587" xml:space="preserve">& </s>
            <s xml:id="echoid-s2588" xml:space="preserve">duca-
              <lb/>
            tur n l quidem
              <lb/>
            ipſi e z æquidi-
              <lb/>
            ſtans, quæ con-
              <lb/>
            tingat ſectionẽ
              <lb/>
            a n z g in n; </s>
            <s xml:id="echoid-s2589" xml:space="preserve">& </s>
            <s xml:id="echoid-s2590" xml:space="preserve">
              <lb/>
            n t æquidiſtans
              <lb/>
            ipſi b d; </s>
            <s xml:id="echoid-s2591" xml:space="preserve">n s ue-
              <lb/>
            ro ad b d perpẽ
              <lb/>
            dicularis. </s>
            <s xml:id="echoid-s2592" xml:space="preserve">Itaq;
              <lb/>
            </s>
            <s xml:id="echoid-s2593" xml:space="preserve">quoniam portio ad humidum in grauitate eam proportio
              <lb/>
            nem habet, quam quadratum, quod fit à linea ψ ad quadra
              <lb/>
            tum b d: </s>
            <s xml:id="echoid-s2594" xml:space="preserve">erit ψ ipſi n t æqualis: </s>
            <s xml:id="echoid-s2595" xml:space="preserve">quod ſimiliter demonſtrabi
              <lb/>
            tur, ut ſuperius. </s>
            <s xml:id="echoid-s2596" xml:space="preserve">quare & </s>
            <s xml:id="echoid-s2597" xml:space="preserve">n t eſt æqualis ipſi u i. </s>
            <s xml:id="echoid-s2598" xml:space="preserve">portiones
              <lb/>
            igitur a u q, e n z inter ſe ſunt æquales. </s>
            <s xml:id="echoid-s2599" xml:space="preserve">Et cum in æquali-
              <lb/>
            bus, & </s>
            <s xml:id="echoid-s2600" xml:space="preserve">ſimilibus portionibus a u q l, a n z g ductæ ſint a q
              <lb/>
            e z, quæ æquales portiones auferunt; </s>
            <s xml:id="echoid-s2601" xml:space="preserve">illa quidem ab extre
              <lb/>
            mitate baſis; </s>
            <s xml:id="echoid-s2602" xml:space="preserve">hæc autem non ab extremitate: </s>
            <s xml:id="echoid-s2603" xml:space="preserve">minorem fa-
              <lb/>
            ciet acutum angulum cum portionis diametro, quæ ab ex-
              <lb/>
            tremitate baſis ducitur. </s>
            <s xml:id="echoid-s2604" xml:space="preserve">At triangulorum n l s, u ω c angu
              <lb/>
            lus ad l angulo ad ω maior eſt. </s>
            <s xml:id="echoid-s2605" xml:space="preserve">ergo b s minor erit, quam
              <lb/>
            b c: </s>
            <s xml:id="echoid-s2606" xml:space="preserve">& </s>
            <s xml:id="echoid-s2607" xml:space="preserve">ſ r maior, quàm c r: </s>
            <s xml:id="echoid-s2608" xml:space="preserve">ideoq; </s>
            <s xml:id="echoid-s2609" xml:space="preserve">n χ maior, quam u h; </s>
            <s xml:id="echoid-s2610" xml:space="preserve">& </s>
            <s xml:id="echoid-s2611" xml:space="preserve">
              <lb/>
            χ t minor, quàm h i. </s>
            <s xml:id="echoid-s2612" xml:space="preserve">Quoniam igitur u y dupla eſt ipſius
              <lb/>
            y i; </s>
            <s xml:id="echoid-s2613" xml:space="preserve">conſtat n χ maiorem eſſe, quàm duplã χ t. </s>
            <s xml:id="echoid-s2614" xml:space="preserve">Sit n m dupla
              <lb/>
            ipſius m t. </s>
            <s xml:id="echoid-s2615" xml:space="preserve">perſpicuũ eſt ex iis, quæ dicta ſunt, non manere
              <lb/>
            portionẽ; </s>
            <s xml:id="echoid-s2616" xml:space="preserve">ſed in clinari, donec eius baſis contingat ſuperfi-
              <lb/>
            ciem humidi: </s>
            <s xml:id="echoid-s2617" xml:space="preserve">contingat autem in puncto uno, ut patet in </s>
          </p>
        </div>
      </text>
    </echo>