Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="79">
          <p>
            <s xml:space="preserve">
              <pb file="0150" n="150" rhead="FED. COMMANDINI"/>
            tius figuræ inſcriptæ centrum grauitatis eſt in linea r e:
              <lb/>
            </s>
            <s xml:space="preserve">quod ſit τ: </s>
            <s xml:space="preserve">iũ-
              <lb/>
              <anchor type="figure" xlink:label="fig-0150-01a" xlink:href="fig-0150-01"/>
            ctaque τ f, & </s>
            <s xml:space="preserve">
              <lb/>
            producta, à
              <lb/>
            puncto h du-
              <lb/>
            catur linea a-
              <lb/>
            xi pyramidis
              <lb/>
            æquidiſtans,
              <lb/>
            quæ cũ linea
              <lb/>
            τ f conueniat
              <lb/>
            in φ. </s>
            <s xml:space="preserve">habebit
              <lb/>
            φ τ ad τ f ean-
              <lb/>
            dem propor-
              <lb/>
            tionem, quã
              <lb/>
            h e ad e g.
              <lb/>
            </s>
            <s xml:space="preserve">Quoniam igi
              <lb/>
            tur exceſſus,
              <lb/>
            quo circũſcri
              <lb/>
            pta figura in-
              <lb/>
            ſcriptam ſupe
              <lb/>
            rat, minor eſt
              <lb/>
            ſolido
              <emph style="sc">K</emph>
            ; </s>
            <s xml:space="preserve">py-
              <lb/>
            ramis ad eun-
              <lb/>
            dẽ exceſsũ ma
              <lb/>
            ioré propor-
              <lb/>
            tionȩ habet,
              <lb/>
            quàm ad _K_ ſo
              <lb/>
            lidum: </s>
            <s xml:space="preserve">uideli
              <lb/>
            cet maiorem,
              <lb/>
            quàm linea h
              <lb/>
            e ad e g; </s>
            <s xml:space="preserve">hoc
              <lb/>
            eſt quam φ τ
              <lb/>
            ad τ f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea multo maiorem habet ad partem ex-
              <lb/>
            ceſſus, quæ intra pyramidem comprehenditur. </s>
            <s xml:space="preserve">Itaque ha-</s>
          </p>
        </div>
      </text>
    </echo>