Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
101
(43)
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(46)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div284
"
type
="
section
"
level
="
1
"
n
="
95
">
<
p
>
<
s
xml:id
="
echoid-s5082
"
xml:space
="
preserve
">
<
pb
o
="
46
"
file
="
0203
"
n
="
203
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ro ita demonſtrabitur. </
s
>
<
s
xml:id
="
echoid-s5083
"
xml:space
="
preserve
">Ducatur à puncto b ad planum ba-
<
lb
/>
ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5084
"
xml:space
="
preserve
">erit b h altitudo coni, uel coni portionis a b c: </
s
>
<
s
xml:id
="
echoid-s5085
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5086
"
xml:space
="
preserve
">b K altitu
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-01
"
xlink:href
="
note-0203-01a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi.</
note
>
do e f g. </
s
>
<
s
xml:id
="
echoid-s5087
"
xml:space
="
preserve
">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
<
lb
/>
enim planorum æ quidiſtantium ſectiones: </
s
>
<
s
xml:id
="
echoid-s5088
"
xml:space
="
preserve
">habebit d b ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-02
"
xlink:href
="
note-0203-02a
"
xml:space
="
preserve
">4 ſexti.</
note
>
b g proportionem ean dem, quam h b ad b k. </
s
>
<
s
xml:id
="
echoid-s5089
"
xml:space
="
preserve
">quare por-
<
lb
/>
tio conoidis a b c ad portionem e f g proportionem habet
<
lb
/>
compoſitam ex proportione baſis a c ad baſim e f; </
s
>
<
s
xml:id
="
echoid-s5090
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5091
"
xml:space
="
preserve
">ex
<
lb
/>
proportione d b axis ad axem b g. </
s
>
<
s
xml:id
="
echoid-s5092
"
xml:space
="
preserve
">Sed circulus, uel
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-03
"
xlink:href
="
note-0203-03a
"
xml:space
="
preserve
">2. duode
<
lb
/>
cimi</
note
>
ellipſis circa diametrum a c ad circulum, uel ellipſim
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-04
"
xlink:href
="
note-0203-04a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
circa e f, eſt ut quadratum a c ad quadratum e f; </
s
>
<
s
xml:id
="
echoid-s5093
"
xml:space
="
preserve
">hoc eſt ut
<
lb
/>
quadratũ a d ad quadratũ e g. </
s
>
<
s
xml:id
="
echoid-s5094
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5095
"
xml:space
="
preserve
">quadratum a d ad quadra
<
lb
/>
tum e g eſt, ut linea d b ad lineam b g. </
s
>
<
s
xml:id
="
echoid-s5096
"
xml:space
="
preserve
">circulus igitur, uel el
<
lb
/>
lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-05
"
xlink:href
="
note-0203-05a
"
xml:space
="
preserve
">15. quinti</
note
>
hoc eſt baſis ad baſim eandem proportionem habet, quã
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-06
"
xlink:href
="
note-0203-06a
"
xml:space
="
preserve
">20. primi
<
lb
/>
conicorũ</
note
>
d b axis ad axem b g. </
s
>
<
s
xml:id
="
echoid-s5097
"
xml:space
="
preserve
">ex quibus ſequitur portionem a b c
<
lb
/>
ad portionem e b f habere proportionem duplam eius,
<
lb
/>
quæ eſt baſis a c ad bafim e f: </
s
>
<
s
xml:id
="
echoid-s5098
"
xml:space
="
preserve
">uel axis d b ad b g axem. </
s
>
<
s
xml:id
="
echoid-s5099
"
xml:space
="
preserve
">quod
<
lb
/>
demonſtrandum proponebatur.</
s
>
<
s
xml:id
="
echoid-s5100
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
96
">
<
head
xml:id
="
echoid-head103
"
xml:space
="
preserve
">THEOREMA XXV. PROPOSITIO XXXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5101
"
xml:space
="
preserve
">Cuiuslibet fruſti à portione rectanguli conoi
<
lb
/>
dis abſcisſi, centrum grauitatis eſt in axe, ita ut
<
lb
/>
demptis primum à quadrato, quod fit ex diame-
<
lb
/>
tro maioris baſis, tertia ipſius parte, & </
s
>
<
s
xml:id
="
echoid-s5102
"
xml:space
="
preserve
">duabus
<
lb
/>
tertiis quadrati, quod fit ex diametro baſis mino-
<
lb
/>
ris: </
s
>
<
s
xml:id
="
echoid-s5103
"
xml:space
="
preserve
">deinde à tertia parte quadrati maioris baſis
<
lb
/>
rurſus dempta portione, ad quam reliquum qua
<
lb
/>
drati baſis maioris unà cum dicta portione duplã
<
lb
/>
proportionem habeat eius, quæ eſt quadrati </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>