Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
11
12
13
(1)
14
15
(2)
16
17
(3)
18
19
(4)
20
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(41)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div173
"
type
="
section
"
level
="
1
"
n
="
54
">
<
p
>
<
s
xml:id
="
echoid-s2437
"
xml:space
="
preserve
">
<
pb
o
="
41
"
file
="
0093
"
n
="
93
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
ſtrabitur portionem, quæ ad humidum in grauitate eandẽ
<
lb
/>
proportionem habeat, quàm quadratum p f ad quadratũ
<
lb
/>
b d in humidum demiſſam, ita ut baſis ipſius nõ cõtingat
<
lb
/>
humidum, inclinatam conſiſtere adeo, ut baſis in uno pun
<
lb
/>
cto humidi ſuperficiem contingat. </
s
>
<
s
xml:id
="
echoid-s2438
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2439
"
xml:space
="
preserve
">axis cum ipſa faciat
<
lb
/>
angulum angulo φ æqualem.</
s
>
<
s
xml:id
="
echoid-s2440
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div175
"
type
="
section
"
level
="
1
"
n
="
55
">
<
head
xml:id
="
echoid-head60
"
xml:space
="
preserve
">COMMENTARIVS.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2441
"
xml:space
="
preserve
">_Hoc eſt quadratum t p ad quadratum b d.</
s
>
<
s
xml:id
="
echoid-s2442
"
xml:space
="
preserve
">]_ Ex uigeſima
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0093-01
"
xlink:href
="
note-0093-01a
"
xml:space
="
preserve
">A</
note
>
ſexta libri Archimedis de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s2443
"
xml:space
="
preserve
">ſphæroidibus. </
s
>
<
s
xml:id
="
echoid-s2444
"
xml:space
="
preserve
">ergo ex no
<
lb
/>
na quinti erit quadratum t p æquale quadrato x o: </
s
>
<
s
xml:id
="
echoid-s2445
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2446
"
xml:space
="
preserve
">propterea li
<
lb
/>
nea t p lineæ x o æqualis.</
s
>
<
s
xml:id
="
echoid-s2447
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2448
"
xml:space
="
preserve
">_Et portiones ipſæ æquales erunt.</
s
>
<
s
xml:id
="
echoid-s2449
"
xml:space
="
preserve
">]_ Ex uigeſimaquinta eiuſ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0093-02
"
xlink:href
="
note-0093-02a
"
xml:space
="
preserve
">B</
note
>
dem libri.</
s
>
<
s
xml:id
="
echoid-s2450
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2451
"
xml:space
="
preserve
">Rurſus
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0093-03
"
xlink:href
="
note-0093-03a
"
xml:space
="
preserve
">C</
note
>
<
figure
xlink:label
="
fig-0093-01
"
xlink:href
="
fig-0093-01a
"
number
="
59
">
<
image
file
="
0093-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0093-01
"/>
</
figure
>
quoniam
<
lb
/>
in portio
<
lb
/>
nibus æ-
<
lb
/>
qualibus,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2452
"
xml:space
="
preserve
">ſimili-
<
lb
/>
bus a o q
<
lb
/>
l, a p m l.</
s
>
<
s
xml:id
="
echoid-s2453
"
xml:space
="
preserve
">]
<
lb
/>
_In portio-_
<
lb
/>
_ne enim a p_
<
lb
/>
_m l deſcri-_
<
lb
/>
_batur por-_
<
lb
/>
_tio a o q æ-_
<
lb
/>
_qualis por_
<
lb
/>
_tioni i p m_,
<
lb
/>
_cadet pun-_
<
lb
/>
_ctum q in-_
<
lb
/>
_fram, alio-_
<
lb
/>
_qui totum parti eſſet æquale. </
s
>
<
s
xml:id
="
echoid-s2454
"
xml:space
="
preserve
">Ducatur deinde i u æquidiſtans a </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>