Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
121
(5)
122
123
(6)
124
125
(7)
126
127
(8)
128
129
(9)
130
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s3043
"
xml:space
="
preserve
">
<
pb
file
="
0120
"
n
="
120
"
rhead
="
FED. COMMANDINI
"/>
triangulum m k φ triangulo n k φ. </
s
>
<
s
xml:id
="
echoid-s3044
"
xml:space
="
preserve
">ergo anguli l z k, o z k,
<
lb
/>
m φ k, n φ k æquales ſunt, ac recti. </
s
>
<
s
xml:id
="
echoid-s3045
"
xml:space
="
preserve
">quòd cum etiam recti
<
lb
/>
ſint, qui ad k; </
s
>
<
s
xml:id
="
echoid-s3046
"
xml:space
="
preserve
">æquidiſtabunt lineæ l o, m n axi b d. </
s
>
<
s
xml:id
="
echoid-s3047
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3048
"
xml:space
="
preserve
">ita.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3049
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0120-01
"
xlink:href
="
note-0120-01a
"
xml:space
="
preserve
">28. primi.</
note
>
demonſtrabuntur l m, o n ipſi a c æquidiſtare. </
s
>
<
s
xml:id
="
echoid-s3050
"
xml:space
="
preserve
">Rurſus ſi
<
lb
/>
iungantur a l, l b, b m, m c, c n, n d, d o, o a: </
s
>
<
s
xml:id
="
echoid-s3051
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3052
"
xml:space
="
preserve
">bifariam di
<
lb
/>
uidantur: </
s
>
<
s
xml:id
="
echoid-s3053
"
xml:space
="
preserve
">à centro autem k ad diuiſiones ductæ lineæ pro-
<
lb
/>
trahantur uſque ad ſectionem in puncta p q r s t u x y: </
s
>
<
s
xml:id
="
echoid-s3054
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3055
"
xml:space
="
preserve
">po
<
lb
/>
ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur. </
s
>
<
s
xml:id
="
echoid-s3056
"
xml:space
="
preserve
">Simili-
<
lb
/>
ter oſtendemus lineas
<
lb
/>
<
figure
xlink:label
="
fig-0120-01
"
xlink:href
="
fig-0120-01a
"
number
="
76
">
<
image
file
="
0120-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01
"/>
</
figure
>
p y, q x, r u, s t axi b d æ-
<
lb
/>
quidiſtantes eſſe: </
s
>
<
s
xml:id
="
echoid-s3057
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3058
"
xml:space
="
preserve
">q r,
<
lb
/>
p s, y t, x u æquidiſtan-
<
lb
/>
tesipſi a c. </
s
>
<
s
xml:id
="
echoid-s3059
"
xml:space
="
preserve
">Itaque dico
<
lb
/>
harum figurarum in el-
<
lb
/>
lipſi deſcriptarum cen-
<
lb
/>
trum grauitatis eſſe pũ-
<
lb
/>
ctum k, idem quod & </
s
>
<
s
xml:id
="
echoid-s3060
"
xml:space
="
preserve
">el
<
lb
/>
lipſis centrum. </
s
>
<
s
xml:id
="
echoid-s3061
"
xml:space
="
preserve
">quadri-
<
lb
/>
lateri enim a b c d cen-
<
lb
/>
trum eſt k, ex decima e-
<
lb
/>
iuſdem libri Archime-
<
lb
/>
dis, quippe cũ in eo om
<
lb
/>
nes diametri cõueniãt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3062
"
xml:space
="
preserve
">Sed in figura alb m c n
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0120-02
"
xlink:href
="
note-0120-02a
"
xml:space
="
preserve
">13. Archi
<
lb
/>
medis.</
note
>
d o, quoniam trianguli
<
lb
/>
alb centrum grauitatis
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0120-03
"
xlink:href
="
note-0120-03a
"
xml:space
="
preserve
">Vltima.</
note
>
eſt in linea l e: </
s
>
<
s
xml:id
="
echoid-s3063
"
xml:space
="
preserve
">trapezijq́; </
s
>
<
s
xml:id
="
echoid-s3064
"
xml:space
="
preserve
">a b m o centrum in linea e k: </
s
>
<
s
xml:id
="
echoid-s3065
"
xml:space
="
preserve
">trape
<
lb
/>
zij o m c d in k g: </
s
>
<
s
xml:id
="
echoid-s3066
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3067
"
xml:space
="
preserve
">trianguli c n d in ipſa g n: </
s
>
<
s
xml:id
="
echoid-s3068
"
xml:space
="
preserve
">erit magnitu
<
lb
/>
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
<
lb
/>
trum grauitatis in linea l n: </
s
>
<
s
xml:id
="
echoid-s3069
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3070
"
xml:space
="
preserve
">o b eandem cauſſam in linea
<
lb
/>
o m. </
s
>
<
s
xml:id
="
echoid-s3071
"
xml:space
="
preserve
">eſt enim trianguli a o d centrum in linea o h: </
s
>
<
s
xml:id
="
echoid-s3072
"
xml:space
="
preserve
">trapezij
<
lb
/>
a l n d in h k: </
s
>
<
s
xml:id
="
echoid-s3073
"
xml:space
="
preserve
">trapezij l b c n in k f: </
s
>
<
s
xml:id
="
echoid-s3074
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3075
"
xml:space
="
preserve
">trianguli b m c in fm.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3076
"
xml:space
="
preserve
">cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
<
lb
/>
nea l n, & </
s
>
<
s
xml:id
="
echoid-s3077
"
xml:space
="
preserve
">in linea o m; </
s
>
<
s
xml:id
="
echoid-s3078
"
xml:space
="
preserve
">erit centrum ipſius punctum k, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>