Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
121
(5)
122
123
(6)
124
125
(7)
126
127
(8)
128
129
(9)
130
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(40)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4801
"
xml:space
="
preserve
">
<
pb
o
="
40
"
file
="
0191
"
n
="
191
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
eſſe pun ctum g. </
s
>
<
s
xml:id
="
echoid-s4802
"
xml:space
="
preserve
">Sequitur ergo uticoſahedri centrum gra
<
lb
/>
uitatis fit idem, quodipſius ſphæræ centrum.</
s
>
<
s
xml:id
="
echoid-s4803
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4804
"
xml:space
="
preserve
">Sit dodecahedrum a ſin ſphæra deſignatum, ſitque ſphæ
<
lb
/>
ræ centrum m. </
s
>
<
s
xml:id
="
echoid-s4805
"
xml:space
="
preserve
">Dico m centrum eſſe grauitatis ipſius do-
<
lb
/>
decahedri. </
s
>
<
s
xml:id
="
echoid-s4806
"
xml:space
="
preserve
">Sit enim pentagonum a b c d e una ex duode-
<
lb
/>
cim baſibus ſolidi a f: </
s
>
<
s
xml:id
="
echoid-s4807
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4808
"
xml:space
="
preserve
">iuncta a m producatur ad ſphæræ
<
lb
/>
ſuperficiem. </
s
>
<
s
xml:id
="
echoid-s4809
"
xml:space
="
preserve
">cadetin angulum ipſi a oppoſitum; </
s
>
<
s
xml:id
="
echoid-s4810
"
xml:space
="
preserve
">quod col-
<
lb
/>
ligitur ex decima ſeptima propoſitione tertiidecimilibri
<
lb
/>
elementorum. </
s
>
<
s
xml:id
="
echoid-s4811
"
xml:space
="
preserve
">cadat in f. </
s
>
<
s
xml:id
="
echoid-s4812
"
xml:space
="
preserve
">at ſi ab aliis angulis b c d e per cẽ
<
lb
/>
trum itidem lineæ ducantur ad ſuperficiem ſphæræ in pun
<
lb
/>
cta g h k l; </
s
>
<
s
xml:id
="
echoid-s4813
"
xml:space
="
preserve
">cadent hæ in alios angulos baſis, quæ ipſi a b c d
<
lb
/>
baſi opponitur. </
s
>
<
s
xml:id
="
echoid-s4814
"
xml:space
="
preserve
">tranſeant ergo per pentagona a b c d e,
<
lb
/>
f g h K l plana ſphæram ſecantia, quæ facient ſectiones cir-
<
lb
/>
culos æquales inter ſe ſe poſtea ducantur ex centro ſphæræ
<
lb
/>
m perpen diculares ad pla-
<
lb
/>
<
figure
xlink:label
="
fig-0191-01
"
xlink:href
="
fig-0191-01a
"
number
="
142
">
<
image
file
="
0191-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0191-01
"/>
</
figure
>
na dictorum circulorũ; </
s
>
<
s
xml:id
="
echoid-s4815
"
xml:space
="
preserve
">ad
<
lb
/>
circulum quidem a b c d e
<
lb
/>
perpendicularis m n: </
s
>
<
s
xml:id
="
echoid-s4816
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4817
"
xml:space
="
preserve
">ad
<
lb
/>
circulum f g h K l ipſa m o,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0191-01
"
xlink:href
="
note-0191-01a
"
xml:space
="
preserve
">corol. pri
<
lb
/>
mæ ſphæ
<
lb
/>
ricorum
<
lb
/>
Theod.</
note
>
erunt puncta n o circulorũ
<
lb
/>
centra: </
s
>
<
s
xml:id
="
echoid-s4818
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4819
"
xml:space
="
preserve
">lineæ m n, m o in
<
lb
/>
ter ſe æquales: </
s
>
<
s
xml:id
="
echoid-s4820
"
xml:space
="
preserve
">quòd circu-
<
lb
/>
li æquales ſint. </
s
>
<
s
xml:id
="
echoid-s4821
"
xml:space
="
preserve
">Eodem mo
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0191-02
"
xlink:href
="
note-0191-02a
"
xml:space
="
preserve
">6. primi
<
lb
/>
phærico
<
lb
/>
rum.</
note
>
do, quo ſupra, demonſtrabi
<
lb
/>
mus lineas m n, m o in unã
<
lb
/>
atque eandem lineam con-
<
lb
/>
uenire. </
s
>
<
s
xml:id
="
echoid-s4822
"
xml:space
="
preserve
">ergo cum puncta n o ſint centra circulorum, con-
<
lb
/>
ſtat ex prima huius & </
s
>
<
s
xml:id
="
echoid-s4823
"
xml:space
="
preserve
">pentagonorũ grauitatis eſſe centra:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4824
"
xml:space
="
preserve
">idcircoq; </
s
>
<
s
xml:id
="
echoid-s4825
"
xml:space
="
preserve
">m n, m o pyramidum a b c d e m, ſ g h _K_ l m axes. </
s
>
<
s
xml:id
="
echoid-s4826
"
xml:space
="
preserve
">
<
lb
/>
ponatur a b c d e m pyramidis grauitatis centrum p: </
s
>
<
s
xml:id
="
echoid-s4827
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4828
"
xml:space
="
preserve
">py
<
lb
/>
ramidis f g h
<
emph
style
="
sc
">K</
emph
>
l m ipſum q centrum. </
s
>
<
s
xml:id
="
echoid-s4829
"
xml:space
="
preserve
">erunt p m, m q æqua-
<
lb
/>
les, & </
s
>
<
s
xml:id
="
echoid-s4830
"
xml:space
="
preserve
">punctum m grauitatis centrum magnitudinis, quæ
<
lb
/>
ex ipſis pyramidibus conſtat. </
s
>
<
s
xml:id
="
echoid-s4831
"
xml:space
="
preserve
">eodẽ modo probabitur qua-
<
lb
/>
rumlibet pyramidum, quæ è regione opponuntur, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>