Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
131
(10)
132
133
(11)
134
135
(12)
136
137
(13)
138
139
(14)
140
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4831
"
xml:space
="
preserve
">
<
pb
file
="
0192
"
n
="
192
"
rhead
="
FED. COMMANDINI
"/>
grauitatis eſſe punctum m. </
s
>
<
s
xml:id
="
echoid-s4832
"
xml:space
="
preserve
">patetigitur totius dodecahe-
<
lb
/>
dri, centrum grauitatis idẽ eſſe, quod & </
s
>
<
s
xml:id
="
echoid-s4833
"
xml:space
="
preserve
">ſphæræ ipſum com
<
lb
/>
prehendentis centrum. </
s
>
<
s
xml:id
="
echoid-s4834
"
xml:space
="
preserve
">quæ quidem omnia demonſtraſſe
<
lb
/>
oportebat.</
s
>
<
s
xml:id
="
echoid-s4835
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div278
"
type
="
section
"
level
="
1
"
n
="
93
">
<
head
xml:id
="
echoid-head100
"
xml:space
="
preserve
">PROBLEMA VI. PROPOSITIO XX VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4836
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Data</
emph
>
qualibet portione conoidis rectangu
<
lb
/>
li, abſciſſa plano ad axem recto, uel non recto; </
s
>
<
s
xml:id
="
echoid-s4837
"
xml:space
="
preserve
">fie-
<
lb
/>
ri poteſt, ut portio ſolida inſcribatur, uel circum-
<
lb
/>
ſcribatur ex cylindris, uel cylindri portionibus,
<
lb
/>
æqualem habentibus altitudinem, ita ut recta li-
<
lb
/>
nea, quæ inter centrum grauitatis portionis, & </
s
>
<
s
xml:id
="
echoid-s4838
"
xml:space
="
preserve
">
<
lb
/>
figuræ inſcriptæ, uel circumſcriptæ interiicitur,
<
lb
/>
ſit minor qualibet recta linea propoſita.</
s
>
<
s
xml:id
="
echoid-s4839
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4840
"
xml:space
="
preserve
">Sit portio conoidis rectanguli a b c, cuius axis b d, gra-
<
lb
/>
uitatisq; </
s
>
<
s
xml:id
="
echoid-s4841
"
xml:space
="
preserve
">centrum e: </
s
>
<
s
xml:id
="
echoid-s4842
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4843
"
xml:space
="
preserve
">fit g recta linea propoſita. </
s
>
<
s
xml:id
="
echoid-s4844
"
xml:space
="
preserve
">quam ue
<
lb
/>
ro proportionem habet linea b e ad lineam g, eandem ha-
<
lb
/>
beat portio conoidis ad ſolidum h: </
s
>
<
s
xml:id
="
echoid-s4845
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4846
"
xml:space
="
preserve
">circumſcribatur por
<
lb
/>
tioni figura, ſicuti dictum eſt, ita ut portiones reliquæ ſint
<
lb
/>
ſolido h minores: </
s
>
<
s
xml:id
="
echoid-s4847
"
xml:space
="
preserve
">cuius quidem figuræ centrum grauitatis
<
lb
/>
ſit punctum
<
emph
style
="
sc
">K</
emph
>
. </
s
>
<
s
xml:id
="
echoid-s4848
"
xml:space
="
preserve
">Dico lineã k e minorem eſſe linea g propo-
<
lb
/>
ſita. </
s
>
<
s
xml:id
="
echoid-s4849
"
xml:space
="
preserve
">niſi enim ſit minor, uel æqualis, uel maior erit. </
s
>
<
s
xml:id
="
echoid-s4850
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4851
"
xml:space
="
preserve
">quo-
<
lb
/>
niam figura circumſcripta ad reliquas portiones maiorem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0192-01
"
xlink:href
="
note-0192-01a
"
xml:space
="
preserve
">8. quĭnti.</
note
>
proportionem habet, quàm portio conoidis ad ſolidum h;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4852
"
xml:space
="
preserve
">hoc eſt maiorem, quàm b c ad g: </
s
>
<
s
xml:id
="
echoid-s4853
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4854
"
xml:space
="
preserve
">b e ad g non minorem
<
lb
/>
habet proportionem, quàm ad _k_ e, propterea quod k e non
<
lb
/>
ponitur minor ipſa g: </
s
>
<
s
xml:id
="
echoid-s4855
"
xml:space
="
preserve
">habebit figura circumſcripta ad por
<
lb
/>
tiones reliquas maiorem proportionem quàm b e ad e k: </
s
>
<
s
xml:id
="
echoid-s4856
"
xml:space
="
preserve
">
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0192-02
"
xlink:href
="
note-0192-02a
"
xml:space
="
preserve
">29. quĭnti
<
lb
/>
ex tradi-
<
lb
/>
tione Cã-
<
lb
/>
ſàni.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s4857
"
xml:space
="
preserve
">diuidendo portio conoidis ad reliquas portiones habe-
<
lb
/>
bit maiorem, quàm b
<
emph
style
="
sc
">K</
emph
>
ad K e. </
s
>
<
s
xml:id
="
echoid-s4858
"
xml:space
="
preserve
">quare ſi fiat ut portio </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>