Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
181
(35)
182
183
(36)
184
185
(37)
186
187
(38)
188
189
(39)
190
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(43)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div281
"
type
="
section
"
level
="
1
"
n
="
94
">
<
p
>
<
s
xml:id
="
echoid-s4926
"
xml:space
="
preserve
">
<
pb
o
="
43
"
file
="
0197
"
n
="
197
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
b m. </
s
>
<
s
xml:id
="
echoid-s4927
"
xml:space
="
preserve
">ergo circulus a c circuli _k_ g: </
s
>
<
s
xml:id
="
echoid-s4928
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4929
"
xml:space
="
preserve
">idcirco cylindrus
<
lb
/>
a h cylindri _k_ l duplus erit. </
s
>
<
s
xml:id
="
echoid-s4930
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s4931
"
xml:space
="
preserve
">linea o p dupla
<
lb
/>
ipſius p n. </
s
>
<
s
xml:id
="
echoid-s4932
"
xml:space
="
preserve
">Deinde inſcripta & </
s
>
<
s
xml:id
="
echoid-s4933
"
xml:space
="
preserve
">circumſcripta portioni
<
lb
/>
alia figura, ita ut inſcripta conſtituatur ex tribus cylin-
<
lb
/>
dris q r, s g, tu: </
s
>
<
s
xml:id
="
echoid-s4934
"
xml:space
="
preserve
">circumſcripta uero ex quatuor a x, y z,
<
lb
/>
_K_ ν, θ λ: </
s
>
<
s
xml:id
="
echoid-s4935
"
xml:space
="
preserve
">diuidantur b o, o m, m n, n d bifariam in punctis
<
lb
/>
μ ν π ρ. </
s
>
<
s
xml:id
="
echoid-s4936
"
xml:space
="
preserve
">Itaque cylindri θ λ centrum grauitætis eſt punctum
<
lb
/>
μ: </
s
>
<
s
xml:id
="
echoid-s4937
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4938
"
xml:space
="
preserve
">cylindri
<
emph
style
="
sc
">K</
emph
>
ν centrum ν. </
s
>
<
s
xml:id
="
echoid-s4939
"
xml:space
="
preserve
">ergo ſi linea μ ν diuidatur in σ,
<
lb
/>
ita ut μ σ ad σ ν proportionẽ eã habeat, quam cylindrus K ν
<
lb
/>
ad cylindrum θ λ, uidelicet quam quadratum
<
emph
style
="
sc
">K</
emph
>
m ad qua-
<
lb
/>
dratum θ o, hoc eſt, quam linea m b ad b o: </
s
>
<
s
xml:id
="
echoid-s4940
"
xml:space
="
preserve
">erit σ centrum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0197-01
"
xlink:href
="
note-0197-01a
"
xml:space
="
preserve
">20. primi
<
lb
/>
conicorũ</
note
>
magnitudinis compoſitæ ex cylindris
<
emph
style
="
sc
">K</
emph
>
ν, θ λ. </
s
>
<
s
xml:id
="
echoid-s4941
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4942
"
xml:space
="
preserve
">cum linea
<
lb
/>
m b ſit dupla b o, erit & </
s
>
<
s
xml:id
="
echoid-s4943
"
xml:space
="
preserve
">μ σ ipſius σ ν dupla. </
s
>
<
s
xml:id
="
echoid-s4944
"
xml:space
="
preserve
">præterea quo-
<
lb
/>
niam cylindri y z centrum grauitatis eſt π, linea σ π ita diui
<
lb
/>
ſa in τ, ut σ τ ad τ π eam habeat proportionem, quam cylin
<
lb
/>
drus y z ad duos cylindros K ν, θ λ: </
s
>
<
s
xml:id
="
echoid-s4945
"
xml:space
="
preserve
">erit τ centrum magnitu
<
lb
/>
dinis, quæ ex dictis tribus cylindris conſtat. </
s
>
<
s
xml:id
="
echoid-s4946
"
xml:space
="
preserve
">cylindrus au-
<
lb
/>
tẽ y z ad cylindrum θ λ eſt, ut linea n b ad b o, hoc eſt ut 3
<
lb
/>
ad 1: </
s
>
<
s
xml:id
="
echoid-s4947
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4948
"
xml:space
="
preserve
">ad cylindrum k ν, ut n b ad b m, uidelicet ut 3 ad 2.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4949
"
xml:space
="
preserve
">quare y z cylĩdrus duobus cylindris k ν, θ λ æqualis erit. </
s
>
<
s
xml:id
="
echoid-s4950
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4951
"
xml:space
="
preserve
">
<
lb
/>
propterea linea σ τ æqualis ipſi τ π. </
s
>
<
s
xml:id
="
echoid-s4952
"
xml:space
="
preserve
">denique cylindri a x
<
lb
/>
centrum grauitatis eſt punctum ρ. </
s
>
<
s
xml:id
="
echoid-s4953
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4954
"
xml:space
="
preserve
">cum τ ζ diuiſa fuerit
<
lb
/>
in eã proportionem, quam habet cylindrus a x ad tres cy-
<
lb
/>
lindros y z, _k_ ν, θ λ: </
s
>
<
s
xml:id
="
echoid-s4955
"
xml:space
="
preserve
">erit in eo puncto centrum grauitatis
<
lb
/>
totius figuræ circũſcriptæ. </
s
>
<
s
xml:id
="
echoid-s4956
"
xml:space
="
preserve
">Sed cylindrus a x ad ipſum y z
<
lb
/>
eſt ut linea d b ad b n: </
s
>
<
s
xml:id
="
echoid-s4957
"
xml:space
="
preserve
">hoc eſt ut 4 ad 3: </
s
>
<
s
xml:id
="
echoid-s4958
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4959
"
xml:space
="
preserve
">duo cylindri _k_ ν
<
lb
/>
θ λ cylindro y z ſunt æquales. </
s
>
<
s
xml:id
="
echoid-s4960
"
xml:space
="
preserve
">cylindrns igitur a x ad tres
<
lb
/>
iam dictos cylindros eſt ut 2 ad 3. </
s
>
<
s
xml:id
="
echoid-s4961
"
xml:space
="
preserve
">Sed quoniã μ σ eſt dua-
<
lb
/>
rum partium, & </
s
>
<
s
xml:id
="
echoid-s4962
"
xml:space
="
preserve
">σ ν unius, qualium μ π eſt ſex; </
s
>
<
s
xml:id
="
echoid-s4963
"
xml:space
="
preserve
">erit σ π par-
<
lb
/>
tium quatuor: </
s
>
<
s
xml:id
="
echoid-s4964
"
xml:space
="
preserve
">proptereaq; </
s
>
<
s
xml:id
="
echoid-s4965
"
xml:space
="
preserve
">τ π duarum, & </
s
>
<
s
xml:id
="
echoid-s4966
"
xml:space
="
preserve
">ν π, hoc eſt π ρ
<
lb
/>
trium. </
s
>
<
s
xml:id
="
echoid-s4967
"
xml:space
="
preserve
">quare ſequitur ut punctum π totius figuræ circum
<
lb
/>
ſcriptæ ſit centrum. </
s
>
<
s
xml:id
="
echoid-s4968
"
xml:space
="
preserve
">Itaque fiat ν υ ad υ π, ut μ σ ad σ ν. </
s
>
<
s
xml:id
="
echoid-s4969
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4970
"
xml:space
="
preserve
">υ ρ
<
lb
/>
bifariam diuidatur in φ. </
s
>
<
s
xml:id
="
echoid-s4971
"
xml:space
="
preserve
">Similiter ut in circumſcripta figu
<
lb
/>
ra oſtendetur centrum magnitudinis compoſitæ ex </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>