Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
201
201 (45)
202
202
203
203 (46)
204
204
205
205 (47)
206
206
207
207
208
208
209
209
210
210
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div272" type="section" level="1" n="92">
          <p>
            <s xml:id="echoid-s4708" xml:space="preserve">
              <pb file="0188" n="188" rhead="FED. COMMANDINI"/>
            At cum e f ſit ſexta pars axis
              <lb/>
              <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a" number="138">
                <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01"/>
              </figure>
            ſphæræ, crit d e tripla e f. </s>
            <s xml:id="echoid-s4709" xml:space="preserve">ergo
              <lb/>
            punctum e eſt grauitatis cen-
              <lb/>
            trum ipſius pyramidis: </s>
            <s xml:id="echoid-s4710" xml:space="preserve">quod
              <lb/>
            in uigeſima ſecunda huius de-
              <lb/>
            monſtratum fuit. </s>
            <s xml:id="echoid-s4711" xml:space="preserve">Sed e eſt cen
              <lb/>
            trum ſphæræ. </s>
            <s xml:id="echoid-s4712" xml:space="preserve">Sequitur igitur,
              <lb/>
            ut centrum grauitatis pyrami-
              <lb/>
            dis in ſphæra deſcriptæ idem
              <lb/>
            ſit, quod ipſius ſphæræ cen-
              <lb/>
            trum.</s>
            <s xml:id="echoid-s4713" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4714" xml:space="preserve">Sit cubus in ſphæra deſcriptus a b, & </s>
            <s xml:id="echoid-s4715" xml:space="preserve">oppoſitorum pla-
              <lb/>
            norum lateribus bifariam diuiſis, per puncta diuiſionum
              <lb/>
            plana ducantur, ut communis ipſorum ſectio ſit recta li-
              <lb/>
            nea c d. </s>
            <s xml:id="echoid-s4716" xml:space="preserve">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
              <lb/>
            a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
              <lb/>
            </s>
            <s xml:id="echoid-s4717" xml:space="preserve">ſecent autem in puncto e. </s>
            <s xml:id="echoid-s4718" xml:space="preserve">erit
              <lb/>
              <figure xlink:label="fig-0188-02" xlink:href="fig-0188-02a" number="139">
                <image file="0188-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02"/>
              </figure>
            e centrũ grauitatis ſolidi a b,
              <lb/>
            id quod demonſtratum eſt in
              <lb/>
            octaua huius. </s>
            <s xml:id="echoid-s4719" xml:space="preserve">Sed quoniam ab
              <lb/>
            eſt ſphæræ diametro æqualis,
              <lb/>
            ut in decima quinta propoſi-
              <lb/>
            tione tertii decimi libri elemẽ
              <lb/>
            torum oſtenditur: </s>
            <s xml:id="echoid-s4720" xml:space="preserve">punctum e
              <lb/>
            ſphæræ quoque centrum erit.
              <lb/>
            </s>
            <s xml:id="echoid-s4721" xml:space="preserve">Cubi igitur in ſphæra deſcri-
              <lb/>
            pti grauitatis centrum idem
              <lb/>
            eſt, quod centrum ipſius ſphæræ.</s>
            <s xml:id="echoid-s4722" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4723" xml:space="preserve">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
              <lb/>
            ſphæræ centrum ſit g. </s>
            <s xml:id="echoid-s4724" xml:space="preserve">Dico punctum g ipſius octahedri
              <lb/>
            grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s4725" xml:space="preserve">Conſtat enim ex iis, quæ demon-
              <lb/>
            ſtrata ſunt à Campano in quinto decimo libro elemento-
              <lb/>
            rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
              <lb/>
            in duas pyramides æquales, & </s>
            <s xml:id="echoid-s4726" xml:space="preserve">ſimiles; </s>
            <s xml:id="echoid-s4727" xml:space="preserve">uidelicetin </s>
          </p>
        </div>
      </text>
    </echo>