Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
21
(5)
22
23
(6)
24
25
(7)
26
27
(8)
28
29
(9)
30
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(12)
of 213
>
>|
DE IIS QVAE VEH. IN AQVA.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
23
">
<
p
style
="
it
">
<
s
xml:space
="
preserve
">
<
pb
o
="
12
"
file
="
0035
"
n
="
35
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
m productam per pendicularem eſſe ad ipſam e f, quam
<
lb
/>
quidem ſecet in n.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">D_vcatvr_</
emph
>
enim à puncto g linea g o ad rectos angulos ipſi
<
lb
/>
e f, diametrum in o ſecans: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">rurſus ab eodem puncto ducatur g p
<
lb
/>
ad diametrum perpendicularis: </
s
>
<
s
xml:space
="
preserve
">ſecet autem ipſa diameter producta
<
lb
/>
lineã e f in q. </
s
>
<
s
xml:space
="
preserve
">erit p b ipſi b q æqualis, ex trigeſimaquinta primi co
<
lb
/>
nicorum: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">g p pro-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0035-01a
"
xlink:href
="
note-0035-01
"/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0035-01a
"
xlink:href
="
fig-0035-01
"/>
portionalis ĩter q p, p o
<
lb
/>
quare quadratũ g p re-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0035-02a
"
xlink:href
="
note-0035-02
"/>
ctangulo o p q æquale
<
lb
/>
erit: </
s
>
<
s
xml:space
="
preserve
">ſed etiã æquale est
<
lb
/>
rectangulo cõtento ipſa
<
lb
/>
p b, & </
s
>
<
s
xml:space
="
preserve
">linea, iuxta quã
<
lb
/>
poſſunt, quæ à ſectione
<
lb
/>
ad diametrũ ordinatim
<
lb
/>
ducuntur, ex undecima
<
lb
/>
primi conicorum. </
s
>
<
s
xml:space
="
preserve
">ergo
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0035-03a
"
xlink:href
="
note-0035-03
"/>
quæ est proportio q p
<
lb
/>
ad p b eadem est lineæ,
<
lb
/>
iuxta quã poſſunt, quæ
<
lb
/>
à ſectione ducũtur ad ip
<
lb
/>
ſam p o: </
s
>
<
s
xml:space
="
preserve
">est autem q p
<
lb
/>
dupla p b: </
s
>
<
s
xml:space
="
preserve
">cũ ſint p b,
<
lb
/>
b q æquales, ut dictum
<
lb
/>
est. </
s
>
<
s
xml:space
="
preserve
">Linea igitur iuxta
<
lb
/>
quam poſſunt, quæ à ſe-
<
lb
/>
ctione ducuntur ipſi-
<
lb
/>
us p o dupla erit: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
propterea p o æqualis
<
lb
/>
ei, quæ uſque ad axem,
<
lb
/>
uidelicet ipſi k h: </
s
>
<
s
xml:space
="
preserve
">ſed eſt p g æqualis k m; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">angulus o p g angu-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0035-04a
"
xlink:href
="
note-0035-04
"/>
lo h k m; </
s
>
<
s
xml:space
="
preserve
">quòd uterque rectus. </
s
>
<
s
xml:space
="
preserve
">quare & </
s
>
<
s
xml:space
="
preserve
">o g ipſi h m est œqualis:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">
<
anchor
type
="
note
"
xlink:label
="
note-0035-05a
"
xlink:href
="
note-0035-05
"/>
& </
s
>
<
s
xml:space
="
preserve
">angulus p o g angulo _k_ h m. </
s
>
<
s
xml:space
="
preserve
">æquidistantes igitur ſunt o g, h n:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">
<
anchor
type
="
note
"
xlink:label
="
note-0035-06a
"
xlink:href
="
note-0035-06
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>