Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
31
(10)
32
33
(11)
34
35
(12)
36
37
(13)
38
39
(14)
40
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div182
"
type
="
section
"
level
="
1
"
n
="
56
">
<
p
>
<
s
xml:id
="
echoid-s2582
"
xml:space
="
preserve
">
<
pb
file
="
0098
"
n
="
98
"
rhead
="
ARCHIMEDIS
"/>
ſuperficiem recto, ſit portionis ſectio anzg; </
s
>
<
s
xml:id
="
echoid-s2583
"
xml:space
="
preserve
">ſuperficiei
<
lb
/>
humidi ez: </
s
>
<
s
xml:id
="
echoid-s2584
"
xml:space
="
preserve
">a-
<
lb
/>
<
figure
xlink:label
="
fig-0098-01
"
xlink:href
="
fig-0098-01a
"
number
="
64
">
<
image
file
="
0098-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0098-01
"/>
</
figure
>
xis portionis,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2585
"
xml:space
="
preserve
">ſectionis dia-
<
lb
/>
meter b d: </
s
>
<
s
xml:id
="
echoid-s2586
"
xml:space
="
preserve
">ſece-
<
lb
/>
turq, b d in pũ-
<
lb
/>
ctis _K_r, ſicuti
<
lb
/>
prius; </
s
>
<
s
xml:id
="
echoid-s2587
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2588
"
xml:space
="
preserve
">duca-
<
lb
/>
tur n l quidem
<
lb
/>
ipſi e z æquidi-
<
lb
/>
ſtans, quæ con-
<
lb
/>
tingat ſectionẽ
<
lb
/>
a n z g in n; </
s
>
<
s
xml:id
="
echoid-s2589
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2590
"
xml:space
="
preserve
">
<
lb
/>
n t æquidiſtans
<
lb
/>
ipſi b d; </
s
>
<
s
xml:id
="
echoid-s2591
"
xml:space
="
preserve
">n s ue-
<
lb
/>
ro ad b d perpẽ
<
lb
/>
dicularis. </
s
>
<
s
xml:id
="
echoid-s2592
"
xml:space
="
preserve
">Itaq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2593
"
xml:space
="
preserve
">quoniam portio ad humidum in grauitate eam proportio
<
lb
/>
nem habet, quam quadratum, quod fit à linea ψ ad quadra
<
lb
/>
tum b d: </
s
>
<
s
xml:id
="
echoid-s2594
"
xml:space
="
preserve
">erit ψ ipſi n t æqualis: </
s
>
<
s
xml:id
="
echoid-s2595
"
xml:space
="
preserve
">quod ſimiliter demonſtrabi
<
lb
/>
tur, ut ſuperius. </
s
>
<
s
xml:id
="
echoid-s2596
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s2597
"
xml:space
="
preserve
">n t eſt æqualis ipſi u i. </
s
>
<
s
xml:id
="
echoid-s2598
"
xml:space
="
preserve
">portiones
<
lb
/>
igitur a u q, e n z inter ſe ſunt æquales. </
s
>
<
s
xml:id
="
echoid-s2599
"
xml:space
="
preserve
">Et cum in æquali-
<
lb
/>
bus, & </
s
>
<
s
xml:id
="
echoid-s2600
"
xml:space
="
preserve
">ſimilibus portionibus a u q l, a n z g ductæ ſint a q
<
lb
/>
e z, quæ æquales portiones auferunt; </
s
>
<
s
xml:id
="
echoid-s2601
"
xml:space
="
preserve
">illa quidem ab extre
<
lb
/>
mitate baſis; </
s
>
<
s
xml:id
="
echoid-s2602
"
xml:space
="
preserve
">hæc autem non ab extremitate: </
s
>
<
s
xml:id
="
echoid-s2603
"
xml:space
="
preserve
">minorem fa-
<
lb
/>
ciet acutum angulum cum portionis diametro, quæ ab ex-
<
lb
/>
tremitate baſis ducitur. </
s
>
<
s
xml:id
="
echoid-s2604
"
xml:space
="
preserve
">At triangulorum n l s, u ω c angu
<
lb
/>
lus ad l angulo ad ω maior eſt. </
s
>
<
s
xml:id
="
echoid-s2605
"
xml:space
="
preserve
">ergo b s minor erit, quam
<
lb
/>
b c: </
s
>
<
s
xml:id
="
echoid-s2606
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2607
"
xml:space
="
preserve
">ſ r maior, quàm c r: </
s
>
<
s
xml:id
="
echoid-s2608
"
xml:space
="
preserve
">ideoq; </
s
>
<
s
xml:id
="
echoid-s2609
"
xml:space
="
preserve
">n χ maior, quam u h; </
s
>
<
s
xml:id
="
echoid-s2610
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2611
"
xml:space
="
preserve
">
<
lb
/>
χ t minor, quàm h i. </
s
>
<
s
xml:id
="
echoid-s2612
"
xml:space
="
preserve
">Quoniam igitur u y dupla eſt ipſius
<
lb
/>
y i; </
s
>
<
s
xml:id
="
echoid-s2613
"
xml:space
="
preserve
">conſtat n χ maiorem eſſe, quàm duplã χ t. </
s
>
<
s
xml:id
="
echoid-s2614
"
xml:space
="
preserve
">Sit n m dupla
<
lb
/>
ipſius m t. </
s
>
<
s
xml:id
="
echoid-s2615
"
xml:space
="
preserve
">perſpicuũ eſt ex iis, quæ dicta ſunt, non manere
<
lb
/>
portionẽ; </
s
>
<
s
xml:id
="
echoid-s2616
"
xml:space
="
preserve
">ſed in clinari, donec eius baſis contingat ſuperfi-
<
lb
/>
ciem humidi: </
s
>
<
s
xml:id
="
echoid-s2617
"
xml:space
="
preserve
">contingat autem in puncto uno, ut patet in </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>